Skip to main content
Log in

Characterization of water-repellent and corrosion-resistant superhydrophobic surfaces on galvanized steel

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Corrosion-resistant superhydrophobic surfaces were successfully fabricated on galvanized steel through a wet oxidation treatment and stearic acid modification. In this work, the formation mechanism of superhydrophobic surfaces and structures were characterized with contact angle meter, scanning electron microscope (SEM), X-ray diffractometer (XRD), and Fourier transform infrared spectroscopy (FTIR). The surface properties of superhydrophobic and non-superhydrophobic surfaces were assessed by calculating surface free energy (γ) and work of adhesion (Wst). Moreover, the corrosion behavior and durability of superhydrophobic surfaces were examined in 3.5 wt% NaCl solution for up to 14 days. Superhydrophobic galvanized surfaces with WCAs of 168° (γ = 0.01 mN/m and 1.57 mN/m) and 162° (γ = 0.04 mN/m and Wst = 3.52 mN/m) were successfully obtained by modifying HCl etched surfaces with ethanolic stearic acid, with or without wet oxidation. According to the results, a zinc stearate layer on the surfaces effectively enhanced their corrosion resistance by numerous air pockets on the surfaces with hierarchical micro-/nanostructures that inhibited penetration by the NaCl solution. Moreover, superhydrophobic as-synthesized ZnO surface by wet oxidation had better corrosion durability than a superhydrophobic etched surface because of the strong physical and chemical bonding of stearic acid onto the as-synthesized ZnO nanorods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jain, R, Pitchumani, R, “Fabrication and Characterization Of Zinc-Based Superhydrophobic Coatings.” Surf. Coat. Technol., 337 223–231 (2018). https://doi.org/10.1016/j.surfcoat.2018.01.014

    Article  CAS  Google Scholar 

  2. Min, J, Park, JH, Sohn, H-K, Park, JM, “Synergistic Effect of Potassium Metal Siliconate on Silicate Conversion Coating for Corrosion Protection of Galvanized Steel.” J. Ind. Eng. Chem., 18 655–660 (2012). https://doi.org/10.1016/j.jiec.2011.11.057

    Article  CAS  Google Scholar 

  3. Vazirinasab, E, Jafari, R, Momen, G, “Application of Superhydrophobic Coatings as a Corrosion Barrier: A Review.” Surf. Coat. Technol., 341 40–56 (2018). https://doi.org/10.1016/j.surfcoat.2017.11.053

    Article  CAS  Google Scholar 

  4. Bahgat, A, Abdullah, A, Alnuaimi, N, “Recent Advances in Corrosion Resistant Superhydrophobic Coatings.” Corros. Rev., 36 127–153 (2017). https://doi.org/10.1515/corrrev-2017-0012

    Article  CAS  Google Scholar 

  5. Xu, W, Ning, T, Yang, X, Lu, S, “Fabrication of Superhydrophobic Surfaces on Zinc Substrates.” Appl. Surf. Sci., 257 4801–4806 (2011). https://doi.org/10.1016/j.apsusc.2010.12.059

    Article  CAS  Google Scholar 

  6. Liu, H, Feng, Y, Zhai, J, Jiang, L, Zhu, D, “Reversible Wettability of a Chemical Vapor Deposition Prepared ZnO Film Between Superhydrophobicity and Superhydrophilicity.” Langmuir, 20 5659–5661 (2004). https://doi.org/10.1021/la036280o

    Article  CAS  Google Scholar 

  7. Liu, H, Szunerits, S, Pisarek, M, Xu, W, Boukherroub, R, “Preparation of Superhydrophobic Coatings on Zinc, Silicon, and Steel by a Solution-Immersion Technique.” ACS Appl. Mater. Interfaces, 1 2086–2091 (2009). https://doi.org/10.1021/am900488w

    Article  CAS  Google Scholar 

  8. Chen, C, et al., “A Green One-Step Fabrication of Superhydrophobic Metallic Surfaces of Aluminum and Zinc.” J. Alloys Compd., 711 506–513 (2017). https://doi.org/10.1016/j.jallcom.2017.04.050

    Article  CAS  Google Scholar 

  9. Naing, TH, Janudom, S, Rachpech, V, Mahathaninwong, N, Thiwong, S, “New NaCl-Simulated Concrete Pore Solution (New NaCl-SPS) for Superhydrophobic Coating of Galvanized Steel.” Mater. Res. Express., 6 116415 (2019). https://doi.org/10.1088/2053-1591/ab45b2

    Article  CAS  Google Scholar 

  10. Qian, B, Shen, Z, “Fabrication of Superhydrophobic Surfaces by Dislocation-Selective Chemical Etching on Aluminum, Copper, and Zinc Substrates.” Langmuir, 21 9007–9009 (2005). https://doi.org/10.1021/la051308c

    Article  CAS  Google Scholar 

  11. Xu, X, et al., “Superamphiphobic Self-Assembled Monolayer of Thiol on the Structured Zn Surface.” Colloids Surf. Physicochem. Eng. Asp., 396 90–95 (2012). https://doi.org/10.1016/j.colsurfa.2011.12.046

    Article  CAS  Google Scholar 

  12. Hsu, C-W, et al., “Relation Between the Plasma Characteristics and Physical Properties of Functional Zinc Oxide Thin Film Prepared by Radio Frequency Magnetron Sputtering Process.” Thin Solid Films, 518 1953–1957 (2010). https://doi.org/10.1016/j.tsf.2009.07.181

    Article  CAS  Google Scholar 

  13. Kok, KY, Ng, IK, Saidin, NU, Bustamam, FKA, “Fabrication of ZnO Nanostructures with Self-Cleaning Functionality.” Adv. Mater. Res., 364 100–104 (2012). https://doi.org/10.4028/www.scientific.net/AMR.364.100

    Article  CAS  Google Scholar 

  14. Zhang, X, Liang, J, Liu, B, Peng, Z, “Preparation of Superhydrophobic Zinc Coating for Corrosion Protection.” Colloids Surf. Physicochem. Eng. Asp., 454 113–118 (2014). https://doi.org/10.1016/j.colsurfa.2014.04.029

    Article  CAS  Google Scholar 

  15. Wang, P, Li, T, Zhang, D, “Fabrication of Non-Wetting Surfaces on Zinc Surface as Corrosion Barrier.” Corros. Sci., 128 110–119 (2017). https://doi.org/10.1016/j.corsci.2017.09.003

    Article  CAS  Google Scholar 

  16. Li, L, et al., “A Facile Approach to Fabricate Superhydrophobic Zn Surface and its Effect on Corrosion Resistance.” Corros. Sci., 85 174–182 (2014). https://doi.org/10.1016/j.corsci.2014.04.011

    Article  CAS  Google Scholar 

  17. Pelicano, CM, Balela, MD, Lockman, Z, “Zinc Oxide Nanostructures Formed by Wet Oxidation of Zn Foil.” Adv. Mater. Res., 1043 22 (2014)

    Article  Google Scholar 

  18. Balela, MDL, Pelicano, CMO, Lockman, Z, “In Situ Mixed Potential Study of the Growth of Zinc Oxide Hierarchical Nanostructures by Wet Oxidation of Zinc Foil.” J. Mater. Sci., 52 2319–2328 (2017). https://doi.org/10.1007/s10853-016-0524-1

    Article  CAS  Google Scholar 

  19. Tan, WK, Razak, KA, Lockman, Z, Kawamura, G, Muto, H, Matsuda, A, “Formation of Highly Crystallized ZnO Nanostructures by Hot-Water Treatment of Etched Zn Foils.” Mater. Lett., 91 111–114 (2013). https://doi.org/10.1016/j.matlet.2012.08.103

    Article  CAS  Google Scholar 

  20. Balela, MDL, Acedera, RA, Flores, CLI, Pelicano, CMO, “Surface Modification of ZnO Nanostructured Film Prepared by Hot Water Oxidation.” Surf. Coat. Technol., 340 199–209 (2018). https://doi.org/10.1016/j.surfcoat.2018.02.055

    Article  CAS  Google Scholar 

  21. ASTM G31-72, 2004 Standard Practice for Laboratory Immersion Corrosion Testing of Metals. ASTM International, West Conshohocken, PA (2004)

    Google Scholar 

  22. ASTM G1–03, 2017 Standard Practice for Preparing, Cleaning and Evaluation Corrosion Test Specimens. ASTM International, West Conshohocken, PA (2017)

    Google Scholar 

  23. Naing, T, Janudom, S, Rachpech, V, Mahathaninwonga, N, Thiwong, S, “Corrosion Behavior of Galvanized Steel for Porcelain Insulator’s Pin in HVAC Transmission Line.” Key Eng. Mater., 803 45–49 (2019). https://doi.org/10.4028/www.scientific.net/KEM.803.45

    Article  Google Scholar 

  24. Wu, W, Chen, M, Liang, S, Wang, X, Chen, J, Zhou, F, “Superhydrophobic Surface from Cu–Zn Alloy by One Step O2 Concentration Dependent Etching.” J. Colloid Interface Sci., 326 478–482 (2008). https://doi.org/10.1016/j.jcis.2008.06.041

    Article  CAS  Google Scholar 

  25. Cheng, Y, Lu, S, Xu, W, Wen, H, Wang, J, “Fabrication of Superhydrophobic Au–Zn Alloy Surface on a Zinc Substrate for Roll-Down, Self-Cleaning and Anti-Corrosion Properties.” J. Mater. Chem. A., 3 16774–16784 (2015). https://doi.org/10.1039/C5TA03979G

    Article  CAS  Google Scholar 

  26. Chakradhar, RPS, Dinesh Kumar, V, “Water-Repellent Coatings Prepared by Modification of ZnO Nanoparticles.” Spectrochim. Acta. Mol. Biomol. Spectrosc., 94 352–356 (2012). https://doi.org/10.1016/j.saa.2012.03.079

    Article  CAS  Google Scholar 

  27. Robinet, L, Corbeil, M-C, “The Characterization of Metal Soaps.” Stud. Conserv., 48 23–40 (2003). https://doi.org/10.1179/sic.2003.48.1.23

    Article  CAS  Google Scholar 

  28. Gurav, AB, et al., “Superhydrophobic Surface Decorated with Vertical ZnO Nanorods Modified by Stearic Acid.” Ceram. Int., 40 7151–7160 (2014). https://doi.org/10.1016/j.ceramint.2013.12.052

    Article  CAS  Google Scholar 

  29. Wang, P, Zhang, D, Qiu, R, Hou, B, “Super-Hydrophobic Film Prepared on Zinc as Corrosion Barrier.” Corros. Sci., 53 2080–2086 (2011). https://doi.org/10.1016/j.corsci.2011.02.025

    Article  CAS  Google Scholar 

  30. Varshney, P, Mohapatra, SS, “Durable and Regenerable Superhydrophobic Coatings for Brass Surfaces with Excellent Self-Cleaning and Anti-Fogging Properties Prepared by Immersion Technique.” Tribol. Int., 123 17–25 (2018). https://doi.org/10.1016/j.triboint.2018.02.036

    Article  CAS  Google Scholar 

  31. Zuo, J, Erbe, A, “Optical and Electronic Properties of Native Zinc Oxide Films on Polycrystalline Zn.” Phys. Chem. Chem. Phys., 12 11467–11476 (2010). https://doi.org/10.1039/C004532B

    Article  CAS  Google Scholar 

  32. Sharma, R, Alam, F, Sharma, AK, Dutta, V, Dhawan, SK, “ZnO Anchored Graphene Hydrophobic Nanocomposite-Based Bulk Heterojunction Solar Cells Showing Enhanced Short-Circuit Current.” J. Mater. Chem. C, 38 8142–8151 (2014). https://doi.org/10.1039/C4TC01056F

    Article  CAS  Google Scholar 

  33. Khan, MF, et al., “Sol-Gel Synthesis of Thorn-like ZnO Nanoparticles Endorsing Mechanical Stirring Effect and Their Antimicrobial Activities: Potential Role as Nano-Antibiotics.” Sci. Rep., 6 27689 (2016). https://doi.org/10.1038/srep27689

    Article  CAS  Google Scholar 

  34. Mia, NH, et al., “Preparation and Spectroscopic Analysis of Zinc Oxide Nanorod Thin Films of Different Thicknesses.” Mater. Sci.-Pol., 35 501–510 (2017). https://doi.org/10.1515/msp-2017-0066

    Article  CAS  Google Scholar 

  35. Abdolmaleki, A, Mallakpour, S, Borandeh, S, “Preparation, Characterization and Surface Morphology of Novel Optically Active Poly(Ester-Amide)/Functionalized ZnO Bionanocomposites via Ultrasonication Assisted Process.” Appl. Surf. Sci., 257 6725–6733 (2011). https://doi.org/10.1016/j.apsusc.2011.02.112

    Article  CAS  Google Scholar 

  36. Wang, Y, Li, B, Xu, C, “Fabrication of Superhydrophobic Surface of Hierarchical ZnO Thin Films by Using Stearic Acid.” Superlattices Microstruct., 51 128–134 (2012). https://doi.org/10.1016/j.spmi.2011.11.006

    Article  CAS  Google Scholar 

  37. Wenzel, RN, “Resistance of Solid Surfaces to Wetting by Water.” Ind. Eng. Chem., 28 988–994 (1936). https://doi.org/10.1021/ie50320a024

    Article  CAS  Google Scholar 

  38. Feng, Y, Chen, S, Cheng, YF, “Stearic Acid Modified Zinc Nano-Coatings with Superhydrophobicity and Enhanced Antifouling Performance.” Surf. Coat. Technol., 340 55–65 (2018). https://doi.org/10.1016/j.surfcoat.2018.02.053

    Article  CAS  Google Scholar 

  39. Cassie, ABD, Baxter, S, “Wettability of Porous Surfaces.” Trans. Faraday Soc., 40 546–551 (1944). https://doi.org/10.1039/TF9444000546

    Article  CAS  Google Scholar 

  40. Ning, T, Xu, W, Lu, S, “Fabrication of Superhydrophobic Surfaces on Zinc Substrates and Their Application as Effective Corrosion Barriers.” Appl. Surf. Sci., 258 1359–1365 (2011). https://doi.org/10.1016/j.apsusc.2011.09.064

    Article  CAS  Google Scholar 

  41. Degen, A, Kosec, M, “Effect of pH and Impurities on the Surface Charge of Zinc Oxide in Aqueous Solution.” J. Eur. Ceram. Soc., 20 667–673 (2000). https://doi.org/10.1016/S0955-2219(99)00203-4

    Article  CAS  Google Scholar 

  42. Tan, WK, Razak, KA, Lockman, Z, Kawamura, G, Muto, H, Matsuda, A, “Optical Properties of Two-Dimensional ZnO Nanosheets Formed by Hot-Water Treatment of Zn Foils.” Solid State Commun., 162 43–47 (2013). https://doi.org/10.1016/j.ssc.2013.02.018

    Article  CAS  Google Scholar 

  43. Xu, W, Shi, X, Lu, S, “Controlled Growth of Superhydrophobic Films Without Any Low-Surface-Energy Modification by Chemical Displacement on Zinc Substrates.” Mater. Chem. Phys., 129 1042–1046 (2011). https://doi.org/10.1016/j.matchemphys.2011.05.053

    Article  CAS  Google Scholar 

  44. Ou, J, Liu, M, Li, W, Wang, F, Xue, M, Li, C, “Corrosion Behavior of Superhydrophobic Surfaces of Ti Alloys in NaCl Solutions.” Appl. Surf. Sci., 258 4724–4728 (2012). https://doi.org/10.1016/j.apsusc.2012.01.066

    Article  CAS  Google Scholar 

  45. Shi, Y, Yang, W, Feng, X, Wang, Y, Yue, G, “Fabrication of Superhydrophobic ZnO Nanorods Surface with Corrosion Resistance via Combining Thermal Oxidation and Surface Modification.” Mater. Lett., 151 24–27 (2015). https://doi.org/10.1016/j.matlet.2015.03.038

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the partial financial support from Center of Excellence in Materials Engineering (CEME), Faculty of Engineering, Prince of Songkla University (PSU). This work was also financially supported by Prince of Songkla University (Contract No. ENG610407S and No. ENG6201029S). Also, sincere thanks go to Thailand’s Education Hub for ASEAN Countries (Contract No. TEH-AC 045/2016) for postgraduate scholarship in PSU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishnu Rachpech.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naing, T.H., Rachpech, V., Janudom, S. et al. Characterization of water-repellent and corrosion-resistant superhydrophobic surfaces on galvanized steel. J Coat Technol Res 17, 1537–1548 (2020). https://doi.org/10.1007/s11998-020-00372-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-020-00372-x

Keywords

Navigation