Skip to main content

Advertisement

Log in

Importance of local and landscape variables on multiple facets of stream fish biodiversity in a Neotropical agroecosystem

  • NEOTROPICAL STREAMS IN CHANGING LANDSCAPES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Few studies have considered the effects of environmental variables at different spatial scales on Neotropical stream biodiversity. Furthermore, scale-related studies mostly include only one facet of biodiversity. To determine the contribution of local and landscape variables to the variation in the taxonomic, functional and phylogenetic α-diversity of stream fish assemblages, we sampled 85 streams in the Upper Paraná River basin, Brazil. Local variables explained a substantial fraction of the variance in almost all biodiversity facets. Landscape variables (i.e., land-use and spatial variables) contributed little to the variation in the α-component of biodiversity. Our results thus highlight the importance of local features for maintaining stream fish biodiversity in agroecosystems. Probably, land-use were not significant because the study area was in a relatively homogeneous landscape severely impacted by anthropogenic activities. It is possible that insignificant effects of spatial structuring occurred because the ichthyofauna has already gone through a homogenization process and/or due to the spatial scale of our study. We suggest that even though local-scale restoration actions would influence biodiversity, we should not neglect landscape restoration because substantial improvements in the ecological integrity of streams are more likely to be accomplished with large-scale actions (e.g., re-establishment of the native riparian forest).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alexander, G. G. & J. D. Allan, 2007. Ecological success in stream restoration: case studies from the Midwestern United States. Environmental Management 40: 245–255.

    Article  PubMed  Google Scholar 

  • Allan, J. D., 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics 35: 257–284.

    Article  Google Scholar 

  • Allan, J. D., D. L. Erickson & J. Fay, 1997. The influence of catchment land use on stream integrity across multiple spatial scales. Freshwater Biology 37: 149–161.

    Article  Google Scholar 

  • Allen, T. H. F. & T. B. Starr, 1982. Hierarchy: Perspectives for Ecological Complexity. Chicago University Press, Chicago, IL.

    Google Scholar 

  • Altermatt, F., 2013. Diversity in riverine metacommunities: a network perspective. Aquatic Ecology 47: 365–377.

    Article  Google Scholar 

  • Angermeier, P. L. & J. R. Karr, 1983. Fish communities along environmental gradients in a system of tropical streams. Environmental Biology of Fishes 9: 117–135.

    Article  Google Scholar 

  • Angermeier, P. L. & M. R. Winston, 1998. Local vs. regional influences on local diversity in stream fish communities of Virginia. Ecology 79: 911–927.

    Article  Google Scholar 

  • Aquino, P. P. U. & R. G. Colli, 2017. Headwater captures and the phylogenetic structure of freshwater fish assemblages: a case study in central Brazil. Journal of Biogeography 44: 207–216.

    Article  Google Scholar 

  • Balmford, A., 1996. Extinction filters and current resilience: the significance of past selection pressures for conservation biology. Trends in Ecology & Evolution 11: 193–196.

    Article  CAS  Google Scholar 

  • Balmford, A. & W. Bond, 2005. Trends in the state of nature and their implications for human well-being. Ecology Letters 8: 1218–1234.

    Article  PubMed  Google Scholar 

  • Barbosa, H. D. O., P. P. Borges, R. B. Dala-Corte, P. T. D. A. Martins & F. B. Teresa, 2019. Relative importance of local and landscape variables on fish assemblages in streams of Brazilian savanna. Fisheries Management and Ecology 26: 119–130.

    Article  Google Scholar 

  • Bengtsson, J., 2010. Applied (meta)community ecology: diversity and ecosystem services at the intersection of local and regional processes. In Verhoef, H. A. & P. J. Morin (eds.), Community ecology. Oxford University Press, Oxford: 115–130.

    Google Scholar 

  • Benone, N. L., C. G. Leal, L. L. de Santos, T. P. Mendes, J. Heino & L. F. A. Montag, 2020. Unravelling patterns of taxonomic and functional diversity of Amazon stream fish. Aquatic Sciences 82, Article number: 75.

  • Betancur-R, R., R. E. Broughton, E. O. Wiley, K. Carpenter, J. A. López, C. Li, N. I. Holcroft, D. Arcila, M. Sanciangco, J. C. Cureton II, F. Zhang, T. Buser, M. A. Campbell, J. A. Ballesteros, A. Roa-Varon, S. Willis, W. C. Borden, T. Rowley, P. C. Reneau, D. J. Hough, G. Lu, T. Grande, G. Arratia & G. Ortí, 2013. The Tree of Life and a New Classification of Bony Fishes. PLOS Currents Tree of Life. Apr 18. Edition 1.

  • Beyer, H. L., 2004. Hawth’s Analysis Tools for ArcGIS. http://www.spatialecology.com/htools.

  • Blanchet, F. G., P. Legendre & D. Borcard, 2008. Forward selection of explanatory variables. Ecology 89: 2623–2632.

    Article  PubMed  Google Scholar 

  • Borcard, D., F. Gillet & P. Legendre, 2011. Numerical Ecology with R. Springer, New York.

    Book  Google Scholar 

  • Bordignon, C. R., L. Casatti, M. A. Pérez-Mayorga, F. B. Teresa & G. L. Brejão, 2015. Fish complementarity is associated to forests in Amazonian streams. Neotropical Ichthyology 13: 579–590.

    Article  Google Scholar 

  • Boswell, M. G., M. C. Wells, L. M. Kirk, Z. Ju, Z. Zhang, R. E. Booth & R. B. Walter, 2009. Comparison of gene expression responses to hypoxia in viviparous (Xiphophorus) and oviparous (Oryzias) fishes using a medaka microarray. Comparative Biochemistry and Physiology, Part C 149: 258–265.

    Google Scholar 

  • Brown, B. L. & C. M. Swan, 2010. Dendritic network structure constrains metacommunity properties in riverine ecosystems. Journal of Animal Ecology 79: 571–580.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho, R. A. & F. L. Tejerina-Garro, 2015a. Environmental and spatial processes: what controls the functional structure of fish assemblages in tropical rivers and headwater streams? Ecology of Freshwater Fish 24: 317–328.

    Article  Google Scholar 

  • Carvalho, R. A. & F. L. Tejerina-Garro, 2015b. The influence of environmental variables on the functional structure of headwater stream fish assemblages: a study of two tropical basins in Central Brazil. Neotropical Ichthyology 13: 349–360.

    Article  Google Scholar 

  • Casatti, L. & R. M. C. Castro, 2006. Testing the ecomorphological hypothesis in a headwater riffles fish assemblage of the rio São Francisco, southeastern Brazil. Neotropical Ichthyology 4: 203–214.

    Article  Google Scholar 

  • Casatti, L., C. P. Ferreira & F. R. Carvalho, 2009. Grass-dominated stream sites exhibit low fish species diversity and dominance by guppies: an assessment of two tropical pasture river basins. Hydrobiologia 632: 273–283.

    Article  Google Scholar 

  • Casatti, L., F. B. Teresa, T. Gonçalves-Souza, E. Bessa, A. R. Manzotti, C. S. Gonçalves & J. O. Zeni, 2012. From forests to cattail: how does the riparian zone influence stream fish? Neotropical Ichthyology 10: 205–214.

    Article  Google Scholar 

  • Casatti, L., F. B. Teresa, J. O. Zeni, M. D. Ribeiro, G. L. Brejão & M. Ceneviva-Bastos, 2015. More of the same: high functional redundancy in stream fish assemblages from tropical agroecosystems. Environmental Management 55: 1300–1314.

    Article  PubMed  Google Scholar 

  • Chapman, L. J., L. S. Kaufman, C. A. Chapman & F. E. McKenzie, 1995. Hypoxia tolerance in twelve species of east African cichlids: potential for low oxygen refugia in Lake Victoria. Conservation Biology 9: 1274–1287.

    Article  PubMed  Google Scholar 

  • Chase, J. M., 2003. Community assembly: when should history matter? Oecologia 136: 489–498.

    Article  PubMed  Google Scholar 

  • Chen, W. J., S. Lavoué & R. L. Mayden, 2013. Evolutionary origin and early biogeography of otophysan fishes (Ostariophysi: Teleostei). Evolution 67: 2218–2239.

    Article  PubMed  Google Scholar 

  • Cianfrani, C. M., S. M. Sullivan, W. C. Hession & M. C. Watzin, 2012. A multitaxonomic approach to understanding local- versus watershed-scale influences on stream biota in the Lake Champlain basin, Vermont, USA. River Research and Applications 28: 973–988.

    Article  Google Scholar 

  • Connor, E. F. & E. D. McCoy, 2001. Species area relationships. In Encyclopedia of Biodiversity, vol. 5. Academic Press, San. Diego: 397–411.

  • Cruz, B. B., L. E. Miranda & M. Cetra, 2013. Links between riparian landcover, instream environment and fish assemblages in headwater. Ecology of Freshwater Fish 22: 607–616.

    Article  Google Scholar 

  • Dala-Corte, R. B., X. Giam, J. D. Olden, F. G. Becker, T. F. Guimarães & A. S. Melo, 2016. Revealing the pathways by which agricultural land-use affects stream fish communities in South Brazilian grasslands. Freshwater Biology 61: 1921–1934.

    Article  Google Scholar 

  • Devictor, V., R. Julliard & F. Jiguet, 2008. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117: 507–514.

    Article  Google Scholar 

  • Diana, M., J. D. Allan & D. Infante, 2006. The influence of physical habitat and land use on stream fish assemblages in Southeastern Michigan. American Fisheries Society Symposium 48: 359–374.

    Google Scholar 

  • Díaz, S., S. Lavorel, F. de Bello, F. Quétier, K. Grigulis & T. M. Robson, 2007. Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences of the United States of America 104: 20684–20689.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dormann, C. F., J. Elith, S. Bacher, C. Buchmann, G. Carl, G. Carré, J. R. G. Marquéz, B. Gruber, B. Lafourcade, P. J. Leitão, T. Münkemüller, C. McClean, P. E. Osborne, B. Reineking, B. Schröder, A. K. Skidmore, D. Zurell & S. Lautenbach, 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36: 27–46.

    Article  Google Scholar 

  • Dray, S. & A. B. Dufour, 2007. The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 22: 1–20.

    Article  Google Scholar 

  • Faith, D. P., 2008. Threatened species and the potential loss of phylogenetic diversity: conservation scenarios based on estimated extinction probabilities and phylogenetic risk analysis. Conservation Biology 22: 1461–1470.

    Article  PubMed  Google Scholar 

  • Feld, C. K., 2013. Response of three lotic assemblages to riparian and catchment-scale land use: implications for designing catchment monitoring programmes. Freshwater Biology 58: 715–729.

    Article  Google Scholar 

  • Fitzpatrick, F. A., B. C. Scudder, B. N. Lenz & D. J. Sullivan, 2001. Effects of multi-scale environmental characteristics on agricultural stream biota in Eastern Wisconsin. Journal of the American Water Resources Association 37: 1489–1507.

    Article  Google Scholar 

  • Forest, F., R. Grenyer, M. Rouget, T. J. Davies, R. M. Cowling, D. P. Faith, A. Balmford, J. C. Manning, Ş. Procheş, M. van der Bank, G. Reeves, T. A. J. Hedderson & V. Savolainen, 2007. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445: 757–760.

    Article  CAS  PubMed  Google Scholar 

  • Frissell, C. A., W. J. Liss, C. E. Wareen & M. D. Hurley, 1986. A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environmental Management 10: 199–214.

    Article  Google Scholar 

  • García-Girón, J., J. Heino, F. García-Criado, C. Fernández-Aláez & J. Alahuhta, 2020. Biotic interactions hold the key to understanding metacommunity organization. Ecography. https://doi.org/10.1111/ecog.05032.

    Article  Google Scholar 

  • Geheber, A. D. & P. K. Geheber, 2016. The effect of spatial scale on relative influences of assembly processes in temperate stream fish assemblages. Ecology 97: 2691–2704.

    Article  PubMed  Google Scholar 

  • Genner, M. J., O. Seehausen, D. H. Lunt, D. A. Joyce, P. W. Shaw, G. R. Carvalho & G. F. Turner, 2007. Age of cichlids: new dates for ancient lake fish radiations. Molecular Biology and Evolution 24: 1269–1282.

    Article  CAS  PubMed  Google Scholar 

  • Gerhard, P. & L. M. Verdade, 2016. Stream fish diversity in an agricultural landscape of Southeastern Brazil. In Gheler-Costa, C., M. C. Lyra-Jorge & L. M. Verdade (eds.), Biodiversity in Agricultural Landscapes of Southeastern Brazil. De Gruyter Open, Berlin: 206–224.

    Chapter  Google Scholar 

  • Géry, J., 1969. The fresh-water fishes of South America. In Fitkau, E. J. (ed.), Biogeography and Ecology in South America. Dr. W. Junk, The Hague: 828–848.

    Google Scholar 

  • Goldenberg Vilar, A., H. van Dam, E. E. van Loon, J. A. Vonk, H. van Der Geest & W. Admiraal, 2014. Eutrophication decreases distance decay of similarity in diatom communities. Freshwater Biology 59: 1522–1531.

    Article  Google Scholar 

  • Gotelli, N. & G. Entsminger, 2003. Swap algorithms in null model analysis. Ecology 84: 532–535.

    Article  Google Scholar 

  • Graham, J. B., 1997. Air-Breathing Fishes. Academic Press, San Diego.

    Book  Google Scholar 

  • Gustafson, E. J., 1998. Quantifying landscape spatial pattern: what is the state of the art? Ecosystems 1: 143–156.

    Article  Google Scholar 

  • Harding, J. S., E. F. Benfield, P. V. Bolstad, G. S. Helfman & E. B. D. Jones III, 1998. Stream biodiversity: The ghost of land use past. Proceedings of the National Academy of Sciences of the United States of America 95: 14843–14847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heino, J., 2013. The importance of metacommunity ecology for environmental assessment research in the freshwater realm. Biological Reviews 88: 166–178.

    Article  PubMed  Google Scholar 

  • Heino, J. & H. Mykrä, 2008. Control of stream insect assemblages: roles of spatial configuration and local environmental factors. Ecological Entomology 33: 614–622.

    Article  Google Scholar 

  • Heino, J., H. Mykrä, J. Kotanen & T. Muotka, 2007. Ecological filters and variability in stream macroinvertebrate communities: do taxonomic and functional structure follow the same path? Ecography 30: 217–230.

    Article  Google Scholar 

  • Heino, J., H. Mykrä & J. Kotanen, 2008. Weak relationships between landscape characteristics and multiple facets of stream macroinvertebrate biodiversity in a boreal drainage basin. Landscape Ecology 23: 417–426.

    Article  Google Scholar 

  • Heino, J., A. S. Melo & L. M. Bini, 2015a. Reconceptualising the beta diversity-environmental heterogeneity relationship in running water systems. Freshwater Biology 60: 223–235.

    Article  Google Scholar 

  • Heino, J., A. S. Melo, T. Siqueira, J. Soininen, S. Valanko & L. M. Bini, 2015b. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshwater Biology 60: 845–869.

    Article  Google Scholar 

  • Heino, J., J. Alahuhta, T. Ala-Hulkko, H. Antikainen, L. M. Bini, N. Bonada, T. Datry, T. Erős, J. Hjort, O. Kotavaara, A. S. Melo & J. Soininen, 2017. Integrating dispersal proxies in ecological and environmental research in the freshwater realm. Environmental Reviews 25: 334–349.

    Article  Google Scholar 

  • Hoeinghaus, D. J., K. O. Winemiller & J. S. Birnbaum, 2007. Local and regional determinants of stream fish assemblage structure: inferences based on taxonomic vs. functional groups. Journal of Biogeography 34: 324–338.

    Article  Google Scholar 

  • Hynes, H. B. N., 1975. The stream and its valley. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 19: 1–15.

    Google Scholar 

  • IPT, 1999. Diagnóstico da situação atual dos recursos hídricos e estabelecimento de diretrizes técnicas para a elaboração do Plano da Bacia Hidrográfica do São José dos Dourados—minuta. Comitê da Bacia Hidrográfica do São José dos Dourados e Fundo Estadual de Recursos Hídricos

  • Johnson, R. K., M. T. Furse, D. Hering & L. Sandin, 2007. Ecological relationships between stream communities and spatial scale: implications for designing catchment-level monitoring programmes. Freshwater Biology 52: 939–958.

    Article  Google Scholar 

  • Kembel, S. W., P. D. Cowan, M. R. Helmus, W. K. Cornwell, H. Morlon, D. D. Ackerly, S. P. Blomberg & C. O. Webb, 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26: 1463–1464.

    Article  CAS  PubMed  Google Scholar 

  • Lake, P. S., N. Bond & P. Reich, 2007. Linking ecological theory with stream restoration. Freshwater Biology 52: 597–615.

    Article  Google Scholar 

  • Lammert, M. & J. D. Allan, 1999. Assessing biotic integrity of streams: effects of scale in measuring the influence of land use/cover and habitat structure on fish and macroinvertebrates. Environmental Management 23: 257–270.

    Article  CAS  PubMed  Google Scholar 

  • Lê, S., J. Josse & F. Husson, 2008. FactoMineR: an R package for multivariate analysis. Journal of Statistical Software 25: 1–18.

    Article  Google Scholar 

  • Legendre, P. & L. F. J. Legendre, 2012. Numerical Ecology, 3rd ed. Elsevier, Amsterdam.

    Google Scholar 

  • Legendre, P., D. Borcard & F. G. Blanchet, 2013. PCNM: MEM spatial eigenfunction and principal coordinate analyses. R package version 2.1-2/r109. http://R-Forge.R-project.org/projects/sedar/.

  • Leitão, R. P., J. Zuanon, D. Mouillot, C. G. Leal, R. M. Hughes, P. R. Kaufmann, S. Villéger, P. S. Pompeu, D. Kasper, F. R. de Paula, S. F. B. Ferraz & T. A. Gardner, 2018. Disentangling the pathways of land use impacts on the functional structure of fish assemblages in Amazon streams. Ecography 41: 219–232.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, Z., J. Wang, Z. Liu, X. Meng, J. Heino, X. Jiang, X. Xiong, X. Jiang & Z. Xie, 2019. Different responses of taxonomic and functional structures of stream macroinvertebrate communities to local stressors and regional factors in a subtropical biodiversity hotspot. Science of the Total Environment 655: 1288–1300.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Z. Liu, J. Heino, X. Jiang, J. Wang, T. Tang & Z. Xie, 2020. Discriminating the effects of local stressors from climatic factors and dispersal processes on multiple biodiversity dimensions of macroinvertebrate communities across subtropical drainage basins. Science of the Total Environment 711: 134750.

    Article  CAS  PubMed  Google Scholar 

  • Luck, G. W., A. Carter & L. Smallbone, 2013. Changes in bird functional diversity across multiple land uses: interpretations of functional redundancy depend on functional group identity. PLOS ONE 8: e63671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyashevska, O. & K. D. Farnsworth, 2012. How many dimensions of biodiversity do we need? Ecological Indicators 18: 485–492.

    Article  Google Scholar 

  • Maddison, W. P. & D. R. Maddison, 2011. Mesquite: a modular system for evolutionary analysis. Version 2.75. http://mesquiteproject.org.

  • Mariguela, T. C., M. A. Alexandrou, F. Foresti & C. Oliveira, 2013. Historical biogeography and cryptic diversity in the Callichthyinae (Siluriformes, Callichthyidae). Journal of Zoological Systematics and Evolutionary Research 51: 308–315.

    Article  Google Scholar 

  • McKinney, M. L. & J. L. Lockwood, 1999. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends in Ecology & Evolution 14: 450–453.

    Article  CAS  Google Scholar 

  • Menezes, S., D. J. Baird & A. M. V. M. Soares, 2010. Beyond taxonomy: a review of macroinvertebrate trait-based community descriptors as tools for freshwater biomonitoring. Journal of Applied Ecology 47: 711–719.

    Article  Google Scholar 

  • Montoya-Burgos, J. I., 2003. Historical biogeography of the catfish genus Hypostomus (Siluriformes: Loricariidae), with implications on the diversification of Neotropical ichthyofauna. Molecular Ecology 12: 1855–1867.

    Article  CAS  PubMed  Google Scholar 

  • Mykrä, H., J. Heino & T. Muotka, 2007. Scale-related patterns in the spatial and environmental components of stream macroinvertebrate assemblage variation. Global Ecology and Biogeography 16: 149–159.

    Article  Google Scholar 

  • Nalon, M. A., I. S. A. Matto & G. A. D. C. Franco, 2008. Meio físico e aspectos da vegetação. In Rodrigues, R. R. & V. L. R. Bononi (orgs) Diretrizes para conservação e restauração da biodiversidade no Estado de São Paulo. Instituto de Botânica, São Paulo: 12–21.

  • Nathans, L. L., F. L. Oswald & K. Nimon, 2012. Interpreting multiple linear regression: A guidebook of variable importance. Practical Assessment, Research & Evaluation 17: 1–19.

    Google Scholar 

  • Near, T. J., R. I. Eytan, A. Dornburg, K. L. Kuhn, J. A. Moore, M. P. Davis, P. C. Wainwright, M. Friedman & W. L. Smith, 2012. Resolution of ray-finned fish phylogeny and timing of diversification. Proceedings of the National Academy of Sciences 109: 13698–13703.

    Article  CAS  Google Scholar 

  • Nimon, K., M. Lewis, R. Kane & R. M. Haynes, 2008. An R package to compute commonality coefficients in multiple regression case: an introduction to the package and a practical example. Behavior Research Methods 40: 457–466.

    Article  PubMed  Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs & H. Wagner, 2015. Vegan: community ecology package. R Package Version. 2.0-10.

  • Osborne, L. L. & D. A. Kovacic, 1993. Riparian vegetated buffer strips in water-quality restoration and stream management. Freshwater Biology 29: 243–258.

    Article  Google Scholar 

  • Palmer, M. A., H. L. Menninger & E. Bernhard, 2010. River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice? Freshwater Biology 55: 205–222.

    Article  Google Scholar 

  • Paula, F. R., P. Gerhard, S. J. Wenger, A. Ferreira, C. A. Vettorazzi & S. F. B. Ferraz, 2013. Influence of forest cover on in-stream large wood in an agricultural landscape of southeastern Brazil: a multi-scale analysis. Landscape Ecology 28: 13–27.

    Article  Google Scholar 

  • Pavoine, S., J. Vallet, A. B. Dufour, S. Gachet & H. Daniel, 2009. On the challenge of treating various types of variables: application for improving the measurement of functional diversity. Oikos 118: 391–402.

    Article  Google Scholar 

  • Petchey, O. L. & K. J. Gaston, 2002. Functional diversity (FD), species richness and community composition. Ecology Letters 5: 402–411.

    Article  Google Scholar 

  • Prunier, J. G., M. Colyn, X. Legendre, K. F. Nimon & M. C. Flamand, 2015. Multicollinearity in spatial genetics: separating the wheat from the chaff using commonality analyses. Molecular Ecology 24: 263–283.

    Article  CAS  PubMed  Google Scholar 

  • Pusey, B. J. & A. H. Arthington, 2003. Importance of the riparian zone to the conservation and management of freshwater fish: a review. Marine and Freshwater Research 54: 1–16.

    Article  Google Scholar 

  • R Development Core Team, 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • Rahel, F. J., 2002. Homogenization of freshwater faunas. Annual Review of Ecology, Evolution, and Systematics 33: 291–315.

    Article  Google Scholar 

  • Ray-Mukherjee, J., K. Nimon, S. Mukherjee, D. W. Morris, R. Slotow & M. Hamer, 2014. Using commonality analysis in multiple regressions: a tool to decompose regression effects in the face of multicollinearity. Methods in Ecology and Evolution 5: 320–328.

    Article  Google Scholar 

  • Ribeiro, M. D., F. B. Teresa & L. Casatti, 2016. Use of functional traits to assess changes in stream fish assemblages across a habitat gradient. Neotropical Ichthyology 14: e140185.

    Article  Google Scholar 

  • Roa-Fuentes, C. A. & L. Casatti, 2017. Influence of environmental features at multiple scales and spatial structure on stream fish communities in a tropical agricultural region. Journal of Freshwater Ecology 32: 281–295.

    Article  Google Scholar 

  • Roa-Fuentes, C. A., L. Casatti & R. M. Romero, 2015. Phylogenetic signal and major ecological shifts in the ecomorphological structure of stream fish in two river basins in Brazil. Neotropical Ichthyology 13: 165–178.

    Article  Google Scholar 

  • Roa-Fuentes, C. A., J. Heino, M. V. Cianciaruso, S. Ferraz, J. O. Zeni & L. Casatti, 2019. Taxonomic, phylogenetic and functional β-diversity patterns of stream fish in tropical agroecosystems. Freshwater Biology 64: 447–460.

    Article  Google Scholar 

  • Roa-Fuentes, C. A., L. Casatti & J. O. Zeni, 2020. Local and landscape environmental variables from 86 Neotropical streams, Upper Paraná River basin, Brazil (Version 1.0.0) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.3976342.

  • Roth, N. E., J. D. Allan & D. L. Erickson, 1996. Landscape influences on stream biotic integrity assessed at multiple spatial scales. Landscape Ecology 11: 141–156.

    Article  Google Scholar 

  • Rudorff, B. F. T., D. A. Aguiar, W. F. Silva, L. M. Sugawara, M. Adami & M. A. Moreira, 2010. Studies on the rapid expansion of sugarcane for ethanol production in São Paulo State (Brazil) using landsat data. Remote Sensing 2: 1057–1076.

    Article  Google Scholar 

  • Safi, K., M. V. Cianciaruso, R. D. Loyola, D. Brito, K. Armour-Marshall & J. A. F. Diniz-Filho, 2011. Understanding global patterns of mammalian functional and phylogenetic diversity. Philosophical Transactions of the Royal Society B: Biological Sciences 366: 2536–2544.

    Article  Google Scholar 

  • Saito, V. S., T. Siqueira & A. A. Fonseca-Gessner, 2015a. Should phylogenetic and functional diversity metrics compose macroinvertebrate multimetric indices for stream biomonitoring? Hydrobiologia 745: 167–179.

    Article  Google Scholar 

  • Saito, V. S., J. Soininen, A. A. Fonseca-Gessner & T. Siqueira, 2015b. Dispersal traits drive the phylogenetic distance decay of similarity in Neotropical stream metacommunities. Journal of Biogeography 42: 2101–2111.

    Article  Google Scholar 

  • Santos, F. B., F. C. Ferreira & K. E. Esteves, 2015. Assessing the importance of the riparian zone for stream fish communities in a sugarcane dominated landscape (Piracicaba River Basin, Southeast Brazil). Environmental Biology of Fishes 98: 1895–1912.

    Article  Google Scholar 

  • Scarabotti, P. A., J. A. López, R. Ghirardi & M. J. Parma, 2011. Morphological plasticity associated with environmental hypoxia in characiform fishes from Neotropical floodplain lakes. Environmental Biology of Fishes 92: 391–402.

    Article  Google Scholar 

  • Schlosser, I. J., 1982. Fish community structure and function along two habitat gradients in a headwater stream. Ecological Monographs 52: 395–414.

    Article  Google Scholar 

  • Sheldon, A. L., 1968. Species diversity and longitudinal succession in stream fishes. Ecology 49: 193–198.

    Article  Google Scholar 

  • Sheldon, F., E. E. Peterson, E. L. Boone, S. Sippel, S. E. Bunn & B. D. Harch, 2012. Identifying the spatial scale of land use that most strongly influences overall river ecosystem health score. Ecological Applications 22: 2188–2203.

    Article  PubMed  Google Scholar 

  • Silva, A. M., L. Casatti, C. A. Álvares, A. M. Leite, L. A. Martinelli & S. F. Durrant, 2007. Soil loss risk and habitat quality in streams of a mesoscale river basin. Scientia Agricola 64: 336–343.

    Article  Google Scholar 

  • Strayer, R., E. Beighley, L. C. Thompson, S. Brooks, C. Nilsson, G. Pinay & R. J. Naiman, 2003. Effects of land cover on stream ecosystems: roles of empirical models and scaling issues. Ecosystems 6: 407–423.

    Article  Google Scholar 

  • Sullivan, J. P., J. Muriel-Cunha & J. G. Lundberg, 2013. Phylogenetic relationships and molecular dating of the major groups of catfishes of the Neotropical superfamily Pimelodoidea (Teleostei, Siluriformes). Proceedings of the Academy of Natural Sciences of Philadelphia 162: 89–110.

    Article  Google Scholar 

  • Surasinghe, T. & R. F. Baldwin, 2014. Ghost of land-use past in the context of current land cover: evidence from salamander communities in streams of Blue Ridge and Piedmont ecoregions. Canadian Journal of Zoology 92: 527–536.

    Article  Google Scholar 

  • Swenson, N. G., 2014. Functional and Phylogenetic Ecology in R. Springer UseR! Series. Springer, New York.

  • Teresa, F. B. & L. Casatti, 2012. Influence of forest cover and mesohabitat types on functional and taxonomic diversity of fish communities in Neotropical lowland streams. Ecology of Freshwater Fish 21: 433–442.

    Article  Google Scholar 

  • Tilman, D., 2001. Functional diversity. In Encyclopedia of Biodiversity, vol. 3. Academic Press, San Diego: 109–120.

  • Tucker, C. M., M. W. Cadotte, S. B. Carvalho, T. J. Davies, S. Ferrier, S. A. Fritz, R. Grenyer, M. R. Helmus, L. S. Jin, A. O. Mooers, S. Pavoine, O. Purschke, D. W. Redding, D. F. Rosauer, M. Winter & F. Mazel, 2016. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biological Reviews 92: 698–715.

    Article  PubMed  Google Scholar 

  • Victor, M. A. M., A. C. Cavalli, J. R. Guillaumon & R. S. Filho, 2005. Cem anos de devastação - Revisitada 30 anos depois. Ministério do Meio Ambiente, Brasília.

    Google Scholar 

  • Wahl, C. M., A. Neils & D. Hooper, 2013. Impacts of land use at the catchment scale constrain the habitat benefits of stream riparian buffers. Freshwater Biology 58: 2310–2324.

    CAS  Google Scholar 

  • Wang, L., J. Lyons, P. Rasmussen, P. Seelbach, T. Simon, M. Wiley, P. Kanehl, E. Baker, S. Niemela & P. M. Stewart, 2003. Watershed, reach, and riparian influences on stream fish assemblages in the Northern lakes and forest ecoregion, U.S.A. Canadian Journal of Fisheries and Aquatic Sciences 60: 491–505.

    Article  Google Scholar 

  • Warton, D. I. & F. K. C. Hui, 2011. The arcsine is asinine: the analysis of proportions in ecology. Ecology 92: 3–10.

    Article  PubMed  Google Scholar 

  • Webb, C. O., 2000. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. The American Naturalist 156: 145–155.

    Article  PubMed  Google Scholar 

  • Webb, C. O., D. D. Ackerly, M. A. McPeek & M. J. Donoghue, 2002. Phylogenies and community ecology. Annual Review of Ecology, Evolution, and Systematics 33: 475–505.

    Article  Google Scholar 

  • Webb, C. O., D. D. Ackerly & S. Kembel, 2011. Phylocom: software for the analysis of phylogenetic community structure and character evolution. User’s manual, version 4: 2.

    Google Scholar 

  • Zeni, J. O. & L. Casatti, 2014. The influence of habitat homogenization on the trophic structure of fish fauna in tropical streams. Hydrobiologia 726: 259–270.

    Article  Google Scholar 

  • Zeni, J. O., D. J. Hoeinghaus & L. Casatti, 2017. Effects of pasture conversion to sugarcane for biofuels production on stream fish assemblages in tropical agroecosystems. Freshwater Biology 62: 2026–2038.

    Article  CAS  Google Scholar 

  • Zeni, J. O., M. A. Pérez-Mayorga, C. A. Roa-Fuentes, G. L. Brejão & L. Casatti, 2019. How deforestation drives stream habitat changes and the functional structure of fish assemblages in different tropical regions. Aquatic Conservation: Marine and Freshwater Ecosystems 29: 1238–1252.

    Article  Google Scholar 

Download references

Acknowledgements

We thank our colleagues from the Ichthyology Laboratory for their help during laboratory and fieldwork; UNESP campus São José do Rio Preto (IBILCE) and Finnish Environment Institute for facilities; ICMBio for the collecting license (SISBIO 5580-1/11435); landowners for permission to conduct research on their properties; Frederico T. S. Miranda and Márcia S. Morinaga for their help with land-use data; Francisco Langeani and Fernando R. Carvalho for their help with fish identification. We also appreciate the critical reading and suggestions from the two anonymous reviewers. This study received financial support from Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP (2012/05983-0). CARF received a scholarship from The World Academy of Sciences and Conselho Nacional de Desenvolvimento Científico e Tecnológico (TWAS–CNPq Postgraduate Fellowship Program 190199/2011-3); JOZ is financially supported by FAPESP (2018/06033-1); LC and MVC are financially supported by CNPq (301877/2017-3 and 307796/2015-9, respectively); CARF receives research support from Universidad Pedagógica y Tecnológica de Colombia, UPTC (Research call: VIE 07-2020; Research project code: SGI-2908).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilo A. Roa-Fuentes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: David J. Hoeinghaus, Jaquelini O. Zeni, Gabriel L. Brejão, Rafael P. Leitão & Renata G. Frederico / Neotropical Stream Fish Ecology in a Changing Landscape

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2452 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roa-Fuentes, C.A., Heino, J., Zeni, J.O. et al. Importance of local and landscape variables on multiple facets of stream fish biodiversity in a Neotropical agroecosystem. Hydrobiologia 849, 4447–4464 (2022). https://doi.org/10.1007/s10750-020-04396-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04396-7

Keywords

Navigation