Skip to main content
Log in

Pluripotential Theory and Convex Bodies: A Siciak–Zaharjuta Theorem

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We work in the setting of weighted pluripotential theory arising from polynomials associated to a convex body P in \(({{\mathbb {R}}}^+)^d\). We define the logarithmic indicator function on \({{\mathbb {C}}}^d\):

$$\begin{aligned} H_P(z):=\sup _{ J\in P} \log |z^{ J}|:=\sup _{ J\in P} \log [|z_1|^{ j_1}\cdots |z_d|^{ j_d}] \end{aligned}$$

and an associated class of plurisubharmonic (psh) functions:

$$\begin{aligned} L_P:=\{u\in PSH({{\mathbb {C}}}^d): u(z)- H_P(z) =\mathcal {O}(1), \ |z| \rightarrow \infty \}. \end{aligned}$$

We first show that \(L_P\) is not closed under standard smoothing operations. However, utilizing a continuous regularization due to Ferrier which preserves \(L_P\), we prove a general Siciak–Zaharjuta type-result in our P-setting: the weighted P-extremal function

$$\begin{aligned} V_{P,K,Q}(z):=\sup \{u(z):u\in L_P, \ u\le Q \ \hbox {on} \ K\} \end{aligned}$$

associated to a compact set K and an admissible weight Q on K can be obtained using the subclass of \(L_P\) arising from functions of the form \(\frac{1}{\deg _P(p)}\log |p|\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayraktar, T.: Zero distribution of random sparse polynomials (version 4). arXiv:1503.00630

  2. Bayraktar, T.: Zero distribution of random sparse polynomials. Mich. Math. J. 66(2), 389–419 (2017)

    Article  MathSciNet  Google Scholar 

  3. Bayraktar, T., Bloom, T., Levenberg, N.: Pluripotential theory and convex bodies. Mat. Sbornik 209(3), 67–101 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Bayraktar, T., Bloom, T., Levenberg, N., Lu, C.H.: Pluripotential theory and convex bodies: large deviation principle. Arkiv Mat. 57, 247–283 (2019)

    Article  MathSciNet  Google Scholar 

  5. Bloom, T., Levenberg, N.: Weighted pluripotential theory in \({\mathbb{C}}^n\). Am. J. Math. 125, 57–103 (2003)

    Article  Google Scholar 

  6. Bloom, T., Shiffman, B.: Zeros of random polynomials on \({\mathbb{C}}^n\). Math. Res. Lett. 14(3), 469–479 (2007)

    Article  MathSciNet  Google Scholar 

  7. Bos, L., Levenberg, N.: Bernstein–Walsh theory associated to convex bodies and applications to multivariate approximation theory. Comput. Methods Funct. Theory 18, 361–388 (2018)

    Article  MathSciNet  Google Scholar 

  8. Demailly, J.-P.: Complex analytic and differential geometry. http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf

  9. Dieu, N.Q.: Regularity of certain sets in \({\mathbb{C}}^n\). Ann. Polon. 3, 219–232 (2003)

    Article  Google Scholar 

  10. Ferrier, J.P.: Spectral Theory and Complex Analysis, North-Holland Mathematics Studies, No. 4, Notas de Matemática (49). North-Holland Publishing Co., New York (1973)

  11. Saff, E., Totik, V.: Logarithmic Potentials with External Fields. Springer, Berlin (1997)

    Book  Google Scholar 

  12. Siciak, J.: Extremal plurisubharmonic functions. Ann. Polon. 39, 175–211 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank one of the referees for a helpful comment leading us to simplify the statement of Lemma 4.6 and hence the definition of the weight function in the proof of Theorem 1.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Levenberg.

Additional information

Communicated by Vladimir V. Andrievskii.

In memory of Stephan Ruscheweyh.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

T. Bayraktar was supported by The Science Academy BAGEP and Turkish Academy of Sciences GEBIP grants. N. Levenberg was supported by Simons Foundation Grant No. 354549.

Appendix

Appendix

We provide a version of the lemma from Ferrier [10] appropriate for our purposes to show \(u_t\) in Proposition 3.1 is psh. For \(\lambda >0\), we use the distance function \(d_{\lambda }:{{\mathbb {C}}}^d \times {{\mathbb {C}}}\rightarrow [0,\infty )\) defined as \(d_{\lambda }(z,w)=\lambda |z|+|w|\) (in our application, \(t=1/\lambda \)).

Lemma 5.1

Let \(\delta :{{\mathbb {C}}}^d \rightarrow [0,\infty )\) be non-negative. For \(\lambda >0\), define

$$\begin{aligned} {\widehat{\delta }}_{\lambda }(s):=\inf _{s'\in {{\mathbb {C}}}^d}[\delta (s')+\lambda |s'-s|]. \end{aligned}$$

Let

$$\begin{aligned} \Omega _1:=\{(s,t)\in {{\mathbb {C}}}^d \times {{\mathbb {C}}}: |t|< \delta (s)\}. \end{aligned}$$

Then

$$\begin{aligned} {\widehat{\delta }}_{\lambda }(s)= d_{\lambda }\bigl ( (s,0),({{\mathbb {C}}}^d \times {{\mathbb {C}}}) \setminus \Omega _1 \bigr ). \end{aligned}$$
(5.1)

Furthermore, if \(\delta \) is lsc, then \(\Omega _1\) is open. Moreover,

$$\begin{aligned} \Omega _1=\{(s,t): -\log \delta (s) + \log |t|<0\} \end{aligned}$$

so that if, in addition, \(-\log \delta \) is psh in \({{\mathbb {C}}}^d\), then \(\Omega _1\) is pseudoconvex in \({{\mathbb {C}}}^d \times {{\mathbb {C}}}\).

Proof

This is straightforward; first observe

$$\begin{aligned}&d_{\lambda }\bigl ( (s,0),({{\mathbb {C}}}^d \times {{\mathbb {C}}}) \setminus \Omega _1 \bigr )=\inf \{\lambda |s-s'|+ |t|:(s',t)\in ({{\mathbb {C}}}^d \times {{\mathbb {C}}}) \setminus \Omega _1 \} \\&\quad = \inf \{\lambda |s-s'|+ |t|:|t|\ge \delta (s') \} = \inf \{\lambda |s-s'|+ \delta (s'):s'\in {{\mathbb {C}}}^d \}={\widehat{\delta }}_{\lambda }(s). \end{aligned}$$

Next,

$$\begin{aligned} \Omega _1&:=\{(s,t)\in {{\mathbb {C}}}^d \times {{\mathbb {C}}}: |t|< \delta (s)\}\\&=\{(s,t)\in {{\mathbb {C}}}^d \times {{\mathbb {C}}}: -\log \delta (s) + \log |t|<0\}. \end{aligned}$$

\(\square \)

Corollary 5.2

Under the hypotheses of the lemma, if \(-\log \delta \) is psh in \({{\mathbb {C}}}^d\) then \(-\log {\widehat{\delta }}_{\lambda }\) is psh.

Proof

Since \(\Omega _1\) is pseudoconvex in \({{\mathbb {C}}}^d \times {{\mathbb {C}}}\) and \(d_{\lambda }:{{\mathbb {C}}}^d \times {{\mathbb {C}}}\rightarrow [0,\infty )\) is a distance function, we have

$$\begin{aligned} U(s,t):=-\log d\bigl ( (s,t), ({{\mathbb {C}}}^d \times {{\mathbb {C}}}) \setminus \Omega _1 \bigr ) \end{aligned}$$

is psh. Thus \(U(s,0)= -\log {\widehat{\delta }}_{\lambda }(s)\) is psh. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayraktar, T., Hussung, S., Levenberg, N. et al. Pluripotential Theory and Convex Bodies: A Siciak–Zaharjuta Theorem. Comput. Methods Funct. Theory 20, 571–590 (2020). https://doi.org/10.1007/s40315-020-00345-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-020-00345-6

Keywords

Mathematics Subject Classification

Navigation