Skip to main content
Log in

Contributions to Modified Spherical Harmonics in Four Dimensions

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

A modification of the classical theory of spherical harmonics in four dimensions is presented. The space \(\mathbb {R}^4 = \{(x,y,t,s)\}\) is replaced by the upper half space \({\mathbb {R}}_{+}^{4}=\left\{ (x,y,t,s), s > 0 \right\} \), and the unit sphere S in \(\mathbb {R}^4\) by the unit half sphere \(S_{+}=\left\{ (x,y,t,s): x^2 +y^2+ t^2+ s^2 =1, s > 0 \right\} \). Instead of the Laplace equation \(\Delta h = 0\) we shall consider the Weinstein equation \(s\Delta u + k \frac{\partial u }{\partial s}= 0\), for \(k \in \mathbb {N}\). The Euclidean scalar product for functions on S will be replaced by a non-Euclidean one for functions on \(S_{+}\). It will be shown that in this modified setting all major results from the theory of spherical harmonics stay valid. In addition we shall deduct—with respect to this non-Euclidean scalar product—an orthonormal system of homogeneous polynomials, which satisfies the above Weinstein equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I. (eds.): Handbook of Mathematical Functions. Applied Mathematics Series 55. United States Department of Commerce, National Bureau of Standards, Washington D.C, New York (1983)

    Google Scholar 

  2. Akin, Ö., Leutwiler, H.: On the invariance of the solutions of the Weinstein equation under Möbius transformations. In: GowriSankaran, K., et al. (eds.) Classical and Modern Potential Theory and Applications, pp. 19–29. Kluwer Acad. Publ, Dordrecht (1994)

    Chapter  Google Scholar 

  3. Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory. Graduate Texts in Mathematics 137. Springer, New York Berlin Heidelberg (1992)

    Book  Google Scholar 

  4. Brelot, M.: Equation de Weinstein et potentiels de Marcel Riesz. In: Seminaire de Theorie de Potentiel, Paris No. 3, vol. 681 of Lecture Notes in Mathematics, pp. 18–38. Springer, Berlin (1978)

  5. Eriksson, S.L., Orelma, H.: Mean value properties for the Weinstein equation using the hyperbolic metric. Complex Anal. Oper. Theory (2013). https://doi.org/10.1007/s11785-012-0280-4

    Article  MathSciNet  MATH  Google Scholar 

  6. Eriksson, S.L., Orelma, H.: Hyperbolic Laplace operator and the Weinstein equation in R3. Adv. Appl. Clifford Algebras (2013). https://doi.org/10.1007/s00006-013-0425-1

    Article  MATH  Google Scholar 

  7. Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series and Products, 4th edn. Academic Press, New York (1980)

    MATH  Google Scholar 

  8. Huber, A.: On the uniqueness of generalized axially symmetric potentials. Ann. Math. 60, 351–358 (1954)

    Article  MathSciNet  Google Scholar 

  9. Leutwiler, H.: Best constants in the Harnack inequality for the Weinstein equation. Aequationes Math. 34, 304–315 (1987)

    Article  MathSciNet  Google Scholar 

  10. Leutwiler, H.: Modified spherical harmonics. Adv. Appl. Clifford Algebras 27, 1479–1502 (2017). https://doi.org/10.1007/s00006-016-0657-y

    Article  MathSciNet  MATH  Google Scholar 

  11. Leutwiler, H.: An orthonormal system of modified spherical harmonics. Complex Anal. Oper. Theory (2017). https://doi.org/10.1007/s11785-017-0648-6

    Article  MathSciNet  MATH  Google Scholar 

  12. Leutwiler, H.: Modified spherical harmonics in four dimensions. Adv. Appl. Clifford Algebras 28, 49 (2018). https://doi.org/10.1007/s00006-018-0861-z

    Article  MathSciNet  MATH  Google Scholar 

  13. Leutwiler, H.: Modified spherical harmonics in several dimensions. Adv. Appl. Clifford Algebras 29, 100 (2019). https://doi.org/10.1007/s00006-019-1021-9

    Article  MathSciNet  MATH  Google Scholar 

  14. Leutwiler, H.: More on modified spherical harmonics. Adv. Appl. Clifford Algebras 29, 70 (2019). https://doi.org/10.1007/s00006-019-0990-z

    Article  MathSciNet  MATH  Google Scholar 

  15. Weinstein, A.: Discontinuous integrals and generalized potential theory. Trans. Am. Math. Soc. 63, 342–354 (1948)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Leutwiler.

Additional information

Communicated by Uwe Kähler.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

“Spectral Theory and Operators in Mathematical Physics” edited by Jussi Behrndt, Fabrizio Colombo and Sergey Naboko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leutwiler, H. Contributions to Modified Spherical Harmonics in Four Dimensions. Complex Anal. Oper. Theory 14, 67 (2020). https://doi.org/10.1007/s11785-020-01026-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11785-020-01026-x

Keywords

Mathematics Subject Classification

Navigation