Skip to main content

Advertisement

Log in

Molecular and genome characterization of colistin-resistant Escherichia coli isolates from wild sea lions (Zalophus californianus)

  • Environmental Microbiology - Short Communication
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Using molecular and whole-genome sequencing tools, we investigated colistin-resistant Escherichia coli isolates from wild sea lions. Two unrelated E. coli colistin-resistant isolates, ST8259 and ST4218, were identified, both belonging to the B2 phylogroup and different serotypes. Polymorphisms in PmrA, PmrB, and PhoQ proteins were identified, and the role of PmrB and PhoQ in contributing to colistin resistance was determined by complementation assays. However, the mutations characterized in the present study are not involved in colistin resistance, which have been described in E. coli isolates from clinical settings. Therefore, the acquired mutations in pmrB and phoQ genes in resistance to colistin in bacteria related to marine environment animals are different. This work contributes to the surveillance and characterization of colistin resistance in Escherichia coli obtained from animals from aquatic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Data availability

The annotated genome sequences are available at the European Nucleotide Archive under the following accession numbers: CAACXL010000001-CAACXL010000288 (https://www.ncbi.nlm.nih.gov/nuccore/CAACXL000000000.1) for E. coli 13591 and CAACXM010000001-CAACXM010000241 (https://www.ncbi.nlm.nih.gov/nuccore/CAACXM000000000.1) for E. coli 13645.

References

  1. Falagas ME, Kasiakou SK, Saravolatz LD (2005) Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis 40(9):1333–1341. https://doi.org/10.1086/429323

    Article  CAS  PubMed  Google Scholar 

  2. Olaitan AO, Morand S, Rolain J-M (2014) Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol 5:643. https://doi.org/10.3389/fmicb.2014.00643

    Article  PubMed  PubMed Central  Google Scholar 

  3. Liu Y-Y, Wang Y, Walsh TR et al (2016) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16(2):161–168. https://doi.org/10.1016/S1473-3099(15)00424-7

    Article  CAS  PubMed  Google Scholar 

  4. Skov RL, Monnet DL (2016) Plasmid-mediated colistin resistance (mcr - 1 gene): three months later, the story unfolds. Eurosurveillance. 21(9):30155. https://doi.org/10.2807/1560-7917.ES.2016.21.9.30155

    Article  PubMed  Google Scholar 

  5. Feng Y (2018) Transferability of MCR-1/2 polymyxin resistance: complex dissemination and genetic mechanism. ACS Infect Dis 4(3):291–300. https://doi.org/10.1021/acsinfecdis.7b00201

    Article  CAS  PubMed  Google Scholar 

  6. Wang X, Wang Y, Zhou Y et al (2018) Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerg Microbes Infect 7(1):122. https://doi.org/10.1038/s41426-018-0124-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shen Y, Yin W, Liu D, Shen J, Wang Y (2018) Reply to Cabello et al., “Aquaculture and mcr colistin resistance determinants”. MBio. 9(4):e01629–e01618. https://doi.org/10.1128/mBio.01629-18

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cabello FC, Godfrey HP (2017) Comment on: Transferable resistance to colistin: a new but old threat. J Antimicrob Chemother 72(2):636–637. https://doi.org/10.1093/jac/dkw432

    Article  CAS  PubMed  Google Scholar 

  9. Cabello FC, Tomova A, Ivanova L, Godfrey HP (2017) Aquaculture and mcr colistin resistance determinants. MBio. 8(5):e01229–e01217. https://doi.org/10.1128/mBio.01229-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Drali R, Berrazeg M, Zidouni LL et al (2018) Emergence of mcr-1 plasmid-mediated colistin-resistant Escherichia coli isolates from seawater. Sci Total Environ 642:90–94. https://doi.org/10.1016/J.SCITOTENV.2018.05.387

    Article  CAS  PubMed  Google Scholar 

  11. Chen K, Chan EW-C, Xie M, Ye L, Dong N, Chen S (2017) Widespread distribution of mcr-1-bearing bacteria in the ecosystem, 2015 to 2016. Eurosurveillance. 22(39):17–00206. https://doi.org/10.2807/1560-7917.ES.2017.22.39.17-00206

    Article  PubMed Central  Google Scholar 

  12. Fernandes MR, Sellera FP, Esposito F, Sabino CP, Cerdeira L, Lincopan N (2017) Colistin-resistant mcr-1-positive Escherichia coli on public beaches, an infectious threat emerging in recreational waters. Antimicrob Agents Chemother 61(7):e00234-17. https://doi.org/10.1128/AAC.00234-17

  13. Jørgensen SB, Søraas A, Arnesen LS, Leegaard T, Sundsfjord A, Jenum PA (2017) First environmental sample containing plasmid-mediated colistin-resistant ESBL-producing Escherichia coli detected in Norway. APMIS. 125(9):822–825. https://doi.org/10.1111/apm.12720

    Article  CAS  PubMed  Google Scholar 

  14. Sellera FP, Fernandes MR, Sartori L et al (2017) Escherichia coli carrying IncX4 plasmid-mediated mcr-1 and blaCTX-M genes in infected 5. Chemother 72(4):1255–1256. https://doi.org/10.1093/jac/dkw543

    Article  CAS  Google Scholar 

  15. Avalos-Téllez R, Carrillo-Casas EM, Atilano-López D et al (2016) Pathogenic leptospira serovars in free-living sea lions in the Gulf of California and along the Baja California coast of Mexico. J Wildl Dis 52(2):199–208. https://doi.org/10.7589/2015-06-133

    Article  CAS  PubMed  Google Scholar 

  16. Ávalos-Téllez R, Ramírez-Pfeiffer C, Hernández-Castro R et al (2014) Infection of California sea lions (Zalophus californianus) with terrestrial Brucella spp. Vet J 202(1):198–200. https://doi.org/10.1016/J.TVJL.2014.06.021

    Article  PubMed  Google Scholar 

  17. Nordmann P, Jayol A, Poirel L (2016) Rapid detection of polymyxin resistance in Enterobacteriaceae. Emerg Infect Dis 22(6):1038–1043. https://doi.org/10.3201/eid2206.151840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Clinical and Laboratory Standards Institute (2018) Performance standards for antimicrobial susceptibility testing: Twenty-eight informational supplement M100 CLSI, Wayne, PA, USA

  19. European Committee on Antimicrobial Susceptibility Testing EUCAST (2918) Clinical breakpoints—bacteria (v 80)

  20. Clermont O, Bonacorsi S, Bingen E, Bonacorsi P (2000) Rapid and simple determination of the Escherichia coli phylogenetic group rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 66(10):4555–4558. https://doi.org/10.1128/AEM.66.10.4555-4558.2000

  21. Wirth T, Falush D, Lan R et al (2006) Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol 60(5):1136–1151. https://doi.org/10.1111/j.1365-2958.2006.05172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Choi Y, Chan AP (2015) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics. 31(16):2745–2747. https://doi.org/10.1093/bioinformatics/btv195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ali SA, Steinkasserer A (1995) PCR-ligation-PCR mutagenesis: a protocol for creating gene fusions and mutations. Biotechniques. 18:746–750

    CAS  PubMed  Google Scholar 

  24. Johnson JR, Delavari P, Kuskowski M, Stell AL (2001) Phylogenetic distribution of extraintestinal virulence-associated traits in Escherichia coli. J Infect Dis 183(1):78–88. https://doi.org/10.1086/317656

    Article  CAS  PubMed  Google Scholar 

  25. Fulham M, Power M, Gray R (2018) Comparative ecology of Escherichia coli in endangered Australian sea lion (Neophoca cinerea) pups. Infect Genet Evol 62:262–269. https://doi.org/10.1016/J.MEEGID.2018.05.002

    Article  PubMed  Google Scholar 

  26. Delport TC, Harcourt RG, Beaumont LJ, Webster KN, Power ML (2015) Molecular detection of antibiotic-resistance determinants in Escherichia coli isolated from the endangered Australian sea lion (Neophoca cinerea). J Wildl Dis 51(3):555–563. https://doi.org/10.7589/2014-08-200

    Article  CAS  PubMed  Google Scholar 

  27. Hien BTT, Scheutz F, Cam PD et al (2008) Diarrheagenic Escherichia coli and Shigella strains isolated from children in a hospital case-control study in Hanoi, Vietnam. J Clin Microbiol 46(3):996–1004. https://doi.org/10.1128/JCM.01219-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Robins-Browne RM, Hartland EL (2002) Escherichia coli as a cause of diarrhea. J Gastroenterol Hepatol 17(4):467–475. https://doi.org/10.1046/j.1440-1746.2002.02769.x

    Article  CAS  PubMed  Google Scholar 

  29. Johnson JR, Delavari P, O’Bryan TT (2001) Escherichia coli O18:K1:H7 isolates from patients with acute cystitis and neonatal meningitis exhibit common phylogenetic origins and virulence factor profiles. J Infect Dis 183(3):425–434. https://doi.org/10.1086/318086

    Article  CAS  PubMed  Google Scholar 

  30. Moulin-Schouleur M, Schouler C, Tailliez P et al (2006) Common virulence factors and genetic relationships between O18:K1:H7 Escherichia coli isolates of human and avian origin. J Clin Microbiol 44(10):3484–3492. https://doi.org/10.1128/JCM.00548-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ménard L-P, Dubreuil JD (2002) Enteroaggregative Escherichia coli heat-stable enterotoxin 1 (EAST1): a new toxin with an old twist. Crit Rev Microbiol 28(1):43–60. https://doi.org/10.1080/1040-840291046687

    Article  PubMed  Google Scholar 

  32. Elisa Drago-Serrano M, Gavilanes Parra S, Angel Manjarrez-Hernández H. EspC, an autotransporter protein secreted by enteropathogenic Escherichia coli (EPEC), displays protease activity on human hemoglobin. FEMS Microbiol Lett 2006;265(1):35–40. doi:https://doi.org/10.1111/j.1574-6968.2006.00463.x

  33. Marchès O, Covarelli V, Dahan S et al (2008) EspJ of enteropathogenic and enterohaemorrhagic Escherichia coli inhibits opsono-phagocytosis. Cell Microbiol 10(5):1104–1115. https://doi.org/10.1111/j.1462-5822.2007.01112.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Poirel L, Jayol A, Nordmann P (2017) Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev 30(2):557–596. https://doi.org/10.1128/CMR.00064-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Quesada A, Porrero MC, Téllez S, Palomo G, García M, Domínguez L (2015) Polymorphism of genes encoding PmrAB in colistin-resistant strains of Escherichia coli and Salmonella enterica isolated from poultry and swine. J Antimicrob Chemother 70(1):71–74. https://doi.org/10.1093/jac/dku320

    Article  CAS  PubMed  Google Scholar 

  36. Luo Q, Yu W, Zhou K et al (2017) Molecular epidemiology and colistin resistant mechanism of mcr-positive and mcr-negative clinical isolated Escherichia coli. Front Microbiol 8:2262. https://doi.org/10.3389/fmicb.2017.02262

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Michael Dunn from the Center for Genomic Science-UNAM for reviewing the manuscript.

Funding

This work was supported by grant 256988 from SEP-CONACyT (Secretaría de Educación Pública-Consejo Nacional de Ciencia y Tecnología).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulises Garza-Ramos.

Ethics declarations

The study protocol was approved by Secretaries of Environment and Natural Resources (SEMARNAT; SGPA/DGVS/0201211) and of the Interior (SEGOB, SATI/PC/006/111). The study was approved by the Ethics Committee on Research from the Instituto Nacional de Salud Publica.

Competing of interests

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Nilton Lincopan.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Castro, R., Rodríguez-Santiago, J., Téllez-Sosa, J. et al. Molecular and genome characterization of colistin-resistant Escherichia coli isolates from wild sea lions (Zalophus californianus). Braz J Microbiol 51, 2009–2014 (2020). https://doi.org/10.1007/s42770-020-00371-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00371-5

Keywords

Navigation