Skip to main content
Log in

On the symplectic superposition method for analytic free vibration solutions of right triangular plates

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The analytic free vibration solutions of triangular plates are important for both rapid analyses and preliminary designs of similar structures. Due to the difficulty in solving the complex boundary value problems of the governing high-order partial differential equations, the current knowledge about the analytic solutions is limited. This study presents a first attempt to explore an up-to-date symplectic superposition method for analytic free vibration solutions of right triangular plates. Specifically, an original problem is regarded as the superposition of three fundamental subproblems of the corresponding rectangular plates that are solved by the symplectic eigenexpansion within the Hamiltonian-system framework, involving the coordinate transformation. The analytic frequency and mode shape solutions are then obtained by the requirement of the equivalence between the original problem and the superposition. By comparison with the numerical results for the right triangular plates under six different combinations of clamped and simply supported boundary constraints, the fast convergence and high accuracy of the present approach are well confirmed. Within the current solution framework, the extension to the problems of more polygonal plates is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Timoshenko, S., Woinowsky-Krieger, S.: Theory of Plates and Shells, 2nd edn. McGraw-Hill, New York (1959)

    MATH  Google Scholar 

  2. Leissa, A.W.: Vibration of Plates, NASA SP-160. Office of Technology Utilization, Washington (1969)

    Google Scholar 

  3. Bhat, R.B.: Flexural vibration of polygonal plates using characteristic orthogonal polynomials in two variables. J. Sound Vib. 114(1), 65–71 (1987)

    Google Scholar 

  4. Kim, C.S., Dickinson, S.M.: The free flexural vibration of right triangular isotropic and orthotropic plates. J. Sound Vib. 141(2), 291–311 (1990)

    Google Scholar 

  5. Leissa, A.W., Jaber, N.A.: Vibrations of completely free triangular plates. Int. J. Mech. Sci. 34(8), 605–616 (1992)

    Google Scholar 

  6. McGee, O.G., Leissa, A.W., Huang, C.S.: Vibrations of cantilevered skewed trapezoidal and triangular plates with corner stress singularities. Int. J. Mech. Sci. 34(1), 63–84 (1992)

    Google Scholar 

  7. Huang, C.S., Leissa, A.W., Chang, M.J.: Vibrations of skewed cantilevered triangular, trapezoidal and parallelogram Mindlin plates with considering corner stress singularities. Int. J. Numer. Methods Eng. 62, 1789–1806 (2005)

    MATH  Google Scholar 

  8. Liew, K.M.: On the use of pb-2 Rayleigh–Ritz method for free flexural vibration of triangular plates with curved internal supports. J. Sound Vib. 165(2), 329–340 (1993)

    MATH  Google Scholar 

  9. Lim, C.W., Liew, K.M., Kitipornchai, S.: Vibration of arbitrarily laminated plates of general trapezoidal planform. J. Acoust. Soc. Am. 100(6), 3674–3685 (1996)

    Google Scholar 

  10. Battaglia, G., Di Matteo, A., Micale, G., Pirrotta, A.: Vibration-based identification of mechanical properties of orthotropic arbitrarily shaped plates: numerical and experimental assessment. Compos. Part B Eng. 150, 212–225 (2018)

    Google Scholar 

  11. Ghorbani Shenas, A., Malekzadeh, P.: Thermal environmental effects on free vibration of functionally graded isosceles triangular microplates. Mech. Adv. Mater. Struct. 24(11), 885–907 (2017)

    Google Scholar 

  12. Ghorbani Shenas, A., Malekzadeh, P.: Free vibration of functionally graded quadrilateral microplates in thermal environment. Thin-Walled Struct. 106, 294–315 (2016)

    Google Scholar 

  13. Ghorbani Shenas, A., Malekzadeh, P., Ziaee, S.: Vibration of triangular functionally graded carbon nanotubes reinforced composite plates with elastically restrained edges in thermal environment. Iran. J. Sci. Technol. Trans. Mech. Eng. 43(1), 653–678 (2019)

    Google Scholar 

  14. Malekzadeh, P., Ghorbani Shenas, A., Ziaee, S.: Thermal buckling of functionally graded triangular microplates. J. Braz. Soc. Mech. Sci. Eng. 40(9), 418 (2018)

    Google Scholar 

  15. Liew, K.M., Wang, C.M.: Vibration of triangular plates: point supports, mixed edges and partial internal curved supports. J. Sound Vib. 172(4), 527–537 (1994)

    MATH  Google Scholar 

  16. Nallim, L.G., Luccioni, B.M., Grossi, R.O.: Vibration of general triangular composite plates with elastically restrained edges. Thin-Walled Struct. 43, 1711–1745 (2005)

    Google Scholar 

  17. Quintana, M.V., Nallim, L.G.: A general Ritz formulation for the free vibration analysis of thick trapezoidal and triangular laminated plates resting on elastic supports. Int. J. Mech. Sci. 69, 1–9 (2013)

    Google Scholar 

  18. Cheung, Y.K., Zhou, D.: Three-dimensional vibration analysis of cantilevered and completely free isosceles triangular plates. Int. J. Solids Struct. 39, 673–687 (2002)

    MATH  Google Scholar 

  19. Zhang, X.F., Li, W.L.: Vibration of arbitrarily-shaped triangular plates with elastically restrained edges. J. Sound Vib. 357, 195–206 (2015)

    Google Scholar 

  20. Lv, X., Shi, D.: Free vibration of arbitrary-shaped laminated triangular thin plates with elastic boundary conditions. Results Phys. 11, 523–533 (2018)

    Google Scholar 

  21. Wang, Q., Xie, F., Liu, T., Qin, B., Yu, H.: Free vibration analysis of moderately thick composite materials arbitrary triangular plates under multi-points support boundary conditions. Int. J. Mech. Sci. 184, 105789 (2020)

    Google Scholar 

  22. Singhal, R., Redekop, D.: Vibration of right-angled triangular plates partially clamped on one side. J. Sound Vib. 251(2), 377–382 (2002)

    Google Scholar 

  23. Hadjoui, A., Mebarek, H., Bachir Bouiadjra, B.: Free vibration analysis for cracked triangular orthotropic plates using h-p finite element method. Int. J. Comput. Methods Eng. Sci. Mech. 12, 59–74 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Fantuzzi, N., Tornabene, F.: Strong formulation isogeometric analysis (SFIGA) for laminated composite arbitrarily shaped plates. Compos. Part B Eng. 96, 173–203 (2016)

    Google Scholar 

  25. Zhong, H.Z.: Free vibration analysis of isosceles triangular Mindlin plates by the triangular differential quadrature method. J. Sound Vib. 237(4), 697–708 (2000)

    Google Scholar 

  26. Fantuzzi, N., Tornabene, F., Bacciocchi, M., Dimitri, R.: Free vibration analysis of arbitrarily shaped functionally graded carbon nanotube-reinforced plates. Compos. Part B Eng. 115, 384–408 (2017)

    Google Scholar 

  27. Hou, Y., Wei, G.W., Xiang, Y.: DSC-Ritz method for the free vibration analysis of Mindlin plates. Int. J. Numer. Methods Eng. 62, 262–288 (2005)

    MATH  Google Scholar 

  28. Chen, S.S., Xu, C.J., Tong, G.S., Wei, X.: Free vibration of moderately thick functionally graded plates by a meshless local natural neighbor interpolation method. Eng. Anal. Bound. Elem. 61, 114–126 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Zhang, L.W., Zhang, Y., Zou, G.L., Liew, K.M.: Free vibration analysis of triangular CNT-reinforced composite plates subjected to in-plane stresses using FSDT element-free method. Compos. Struct. 149, 247–260 (2016)

    Google Scholar 

  30. Askari, H., Saadatnia, Z., Esmailzadeh, E., Younesian, D.: Multi-frequency excitation of stiffened triangular plates for large amplitude oscillations. J. Sound Vib. 333(22), 5817–5835 (2014)

    Google Scholar 

  31. Chernyshov, N.A., Chernyshov, A.D.: Viscoelastic vibrations of a triangular plate. J. Appl. Mech. Tech. Phys. 42(3), 510–515 (2001)

    MATH  Google Scholar 

  32. Guan, X., Tang, J., Shi, D., Shuai, C., Wang, Q.: A semi-analytical method for transverse vibration of sector-like thin plate with simply supported radial edges. Appl. Math. Model. 60, 48–63 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Gorman, D.J.: Accurate analytical solution for free vibration of the simply supported triangular plate. AIAA J. 27(5), 647–651 (1989)

    MathSciNet  Google Scholar 

  34. Kang, S.: Improved non-dimensional dynamic influence function method for vibration analysis of arbitrarily shaped plates with simply supported edges. Adv. Mech. Eng. 10(2), 1–12 (2018)

    Google Scholar 

  35. Feng, K.: On difference schemes and symplectic geometry. In: Feng, K. (ed.) Proceedings of the 1984 Beijing Symposium on Differential Geometry and Differential Equations. pp. 42-58. Science Press, Beijing (1985)

  36. Feng, K.: Difference schemes for Hamiltonian formalism and symplectic geometry. J. Comput. Math. 4(3), 279–289 (1986)

    MathSciNet  MATH  Google Scholar 

  37. Feng, K., Qin, M.: Hamiltonian algorithms for Hamiltonian systems and a comparative numerical study. Comput. Phys. Commun. 65(1–3), 173–187 (1991)

    MathSciNet  MATH  Google Scholar 

  38. Zhong, W., Williams, F.W.: Physical interpretation of the symplectic orthogonality of the eigensolutions of a hamiltonian or symplectic matrix. Comput. Struct. 49(4), 749–750 (1993)

    MathSciNet  MATH  Google Scholar 

  39. Ouyang, H., Zhong, W.: A finite strip method in Hamiltonian formulation. Comput. Struct. 53(2), 241–244 (1994)

    MATH  Google Scholar 

  40. Yao, W., Zhong, W., Lim, C.W.: Symplectic Elasticity. World Scientific, Singapore (2009)

    MATH  Google Scholar 

  41. Lim, C.W., Lü, C.F., Xiang, Y., Yao, W.: On new symplectic elasticity approach for exact free vibration solutions of rectangular Kirchhoff plates. Int. J. Eng. Sci. 47, 131–140 (2009)

    MathSciNet  MATH  Google Scholar 

  42. Lim, C.W., Xu, X.S.: Symplectic elasticity: theory and applications. Appl. Mech. Rev. 63(050802), 1–10 (2010)

    Google Scholar 

  43. Zhang, T.: Symplectic analysis for wrinkles: a case study of layered neo-hookean structures. J. Appl. Mech. Trans. ASME 84(071002), 1–9 (2017)

    Google Scholar 

  44. Sui, J., Chen, J., Zhang, X., Nie, G., Zhang, T.: Symplectic analysis of wrinkles in elastic layers with graded stiffnesses. J. Appl. Mech. Trans. ASME 86(011008), 1–8 (2019)

    Google Scholar 

  45. Xu, X.S., Zhou, Z.H., Leung, A.Y.T.: Analytical stress intensity factors for edge-cracked cylinder. Int. J. Mech. Sci. 52, 892–903 (2010)

    Google Scholar 

  46. Ma, Y., Zhang, Y., Kennedy, D.: A symplectic analytical wave based method for the wave propagation and steady state forced vibration of rectangular thin plates. J. Sound Vib. 339, 196–214 (2015)

    Google Scholar 

  47. Li, R., Zhong, Y., Li, M.: Analytic bending solutions of free rectangular thin plates resting on elastic foundations by a new symplectic superposition method. Proc. R. Soc. A Math. Phys. Eng. Sci. 469(20120681), 1–18 (2013)

    MathSciNet  MATH  Google Scholar 

  48. Li, R., Zheng, X., Yang, Y., Huang, M., Huang, X.: Hamiltonian system-based new analytic free vibration solutions of cylindrical shell panels. Appl. Math. Model. 76, 900–917 (2019)

    MathSciNet  MATH  Google Scholar 

  49. Li, R., Tian, Y., Zheng, X., Wang, H., Xiong, S., Wang, B.: New analytic bending solutions of rectangular thin plates with a corner point-supported and its adjacent corner free. Eur. J. Mech. A Solids 66, 103–113 (2017)

    MathSciNet  MATH  Google Scholar 

  50. Li, R., Tian, Y., Wang, P., Shi, Y., Wang, B.: New analytic free vibration solutions of rectangular thin plates resting on multiple point supports. Int. J. Mech. Sci. 110, 53–61 (2016)

    Google Scholar 

  51. Li, R., Wang, H., Zheng, X., Xiong, S., Hu, Z., Yan, X., Xiao, Z., Xu, H., Li, P.: New analytic buckling solutions of rectangular thin plates with two free adjacent edges by the symplectic superposition method. Eur. J. Mech. A Solids 76, 247–262 (2019)

    MathSciNet  MATH  Google Scholar 

  52. Oyediran, A.A., Gbadeyan, J.A.: Vibration of a prestressed orthotropic rectangular thin plate via singular perturbation technique. Acta Mech. 64(3–4), 165–178 (1986)

    MATH  Google Scholar 

  53. Hutter, K., Olunloyo, V.O.S.: Vibration of an anisotropically prestressed thick rectangular membrane with small bending rigidity. Acta Mech. 20(1–2), 1–22 (1974)

    MATH  Google Scholar 

  54. Chien, W., Pan, L., Liu, X.: Large deflection problem of a clamped elliptical plate subjected to uniform pressure. Appl. Math. Mech. 13(10), 891–908 (1992)

    MATH  Google Scholar 

  55. Li, R., Wang, B., Li, G.: Analytic solutions for the free vibration of rectangular thin plates with two adjacent corners point-supported. Arch. Appl. Mech. 85, 1815–1824 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported the National Natural Science Foundation of China (Grants 11972103 and 11825202), Liaoning Revitalization Talents Program (Grant XLYC 1807126), and the Fundamental Research Funds for the Central Universities (Grant DUT18GF101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The expressions for \({f_1}\left( {m,p,\phi ,{\bar{\omega }} ,{{\bar{K}}_p},{{{\bar{L}}}_p}} \right) \), \({f_2}\left( {m,p,\phi ,{\bar{\omega }} ,{{{\bar{K}}}_p},{{{\bar{L}}}_p}} \right) \), \({f_3}\left( {n,p,{\bar{\phi }} ,{\hat{\omega }} ,{{{\bar{K}}}_p},{{{\bar{L}}}_p}} \right) \), \({f_4}\left( {n,p,{\bar{\phi }} ,{\hat{\omega }} ,{{{\bar{K}}}_p},{{{\bar{L}}}_p}} \right) \), \({f_5}\left( {m,p,\phi ,{\bar{\omega }} ,{{{\bar{E}}}_m},{{{\bar{F}}}_m}} \right) \), \({f_{\text {6}}}\left( {n,p,{\bar{\phi }} ,{\hat{\omega }} ,{{\bar{G}}_n},{{{\bar{H}}}_n}} \right) \), \({f_{\text {7}}}\left( {m,p,\phi ,\bar{\omega },{{{\bar{E}}}_m},{{{\bar{F}}}_m}} \right) \), \({f_{\text {8}}}\left( {n,p,{\bar{\phi }} ,{\hat{\omega }} ,{{{\bar{G}}}_n},{{{\bar{H}}}_n}} \right) \), \({f_9}\left( {m,n,\phi ,{\bar{\omega }} ,{{{\bar{G}}}_n},{{{\bar{H}}}_n}} \right) \), \({f_{10}}\left( {m,p,\phi ,{\bar{\omega }} ,{{\bar{K}}_p},{{{\bar{L}}}_p}} \right) \), \({f_{11}}\left( {m,n,{\bar{\phi }} ,\hat{\omega },{{{\bar{E}}}_m},{{{\bar{F}}}_m}} \right) \), \({f_{12}}\left( {n,p,{\bar{\phi }} ,{\hat{\omega }} ,{{{\bar{K}}}_p},{{{\bar{L}}}_p}} \right) \), \({f_{13}}\left( {m,p,\phi ,{\bar{\omega }} ,{{{\bar{E}}}_m},{{{\bar{F}}}_m}} \right) \), and \({f_{14}}\left( {n,p,{\bar{\phi }} ,{\hat{\omega }} ,{{\bar{G}}_n},{{{\bar{H}}}_n}} \right) \) are as follows:

$$\begin{aligned}&{f_1}\left( {m,p,\phi ,{\bar{\omega }} ,{{{\bar{K}}}_p},{{{\bar{L}}}_p}} \right) \nonumber \\&\quad = \frac{{2mp{\pi ^2}\phi }}{{{\bar{\omega }} {\xi _{m5}}{\xi _{m6}}{\xi _{m7}}{\xi _{m8}}\sqrt{1 + {\phi ^2}} }} \nonumber \\&\qquad \times \, \left\{ {{\varsigma _p}{\xi _{m5}}{\xi _{m7}}\left( {{{{\bar{L}}}_p} + {{{\bar{K}}}_p}{\xi _{p1}}} \right) \left[ {{\text {cth}} \left( {\frac{{\phi {\varsigma _p}}}{{1 + {\phi ^2}}}} \right) - \cos \left( {m\pi } \right) \cos \left( {\frac{{p\pi }}{{1 + {\phi ^2}}}} \right) {\text {csch}} \left( {\frac{{\phi {\varsigma _p}}}{{1 + {\phi ^2}}}} \right) } \right] } \right. \nonumber \\&\qquad \left. { -\, {\varepsilon _p}{\xi _{m6}}{\xi _{m8}}\left( {{{\bar{L}}_p} + {{{\bar{K}}}_p}{\xi _{p2}}} \right) \left[ {{\text {cth}} \left( {\frac{{\phi {\varepsilon _p}}}{{1 + {\phi ^2}}}} \right) - \cos \left( {m\pi } \right) \cos \left( {\frac{{p\pi }}{{1 + {\phi ^2}}}} \right) {\text {csch}} \left( {\frac{{\phi {\varepsilon _p}}}{{1 + {\phi ^2}}}} \right) } \right] } \right\} \end{aligned}$$
(A1)

where \( {\xi _{m5}} = {\pi ^2}\left[ {{{\left( {m + p} \right) }^2} + {m^2}{\phi ^2}} \right] + {\phi ^2}{\bar{\omega }} \), \({\xi _{m6}} = {\pi ^2}\left[ {{{\left( {m + p} \right) }^2} + {m^2}{\phi ^2}} \right] - {\phi ^2}{\bar{\omega }}\), \({\xi _{m7}} = {\pi ^2}\left[ {{{\left( {m - p} \right) }^2} + {m^2}{\phi ^2}} \right] + {\phi ^2}{\bar{\omega }} \), and \({\xi _{m8}} = {\pi ^2}\left[ {{{\left( {m - p} \right) }^2} + {m^2}{\phi ^2}} \right] - {\phi ^2}{\bar{\omega }}\).

$$\begin{aligned}&{f_2}\left( {m,p,\phi ,{\bar{\omega }} ,{{{\bar{K}}}_p},{{{\bar{L}}}_p}} \right) \nonumber \\&\quad = \frac{{2mp{\pi ^2}\phi }}{{{\bar{\omega }} {\xi _{m5}}{\xi _{m6}}{\xi _{m7}}{\xi _{m8}}\sqrt{1 + {\phi ^2}} }} \nonumber \\&\qquad \times \, \left\{ {{\varepsilon _p}{\xi _{m1}}{\xi _{m6}}{\xi _{m8}}\left( {{{{\bar{L}}}_p} + {{{\bar{K}}}_p}{\xi _{p2}}} \right) \left[ {{\text {cth}} \left( {\frac{{\phi {\varepsilon _p}}}{{1 + {\phi ^2}}}} \right) - \cos \left( {m\pi } \right) \cos \left( {\frac{{p\pi }}{{1 + {\phi ^2}}}} \right) {\text {csch}} \left( {\frac{{\phi {\varepsilon _p}}}{{1 + {\phi ^2}}}} \right) } \right] } \right. \nonumber \\&\qquad \left. { -\, {\varsigma _p}{\xi _{m2}}{\xi _{m5}}{\xi _{m7}}\left( {{{{\bar{L}}}_p} + {{{\bar{K}}}_p}{\xi _{p1}}} \right) \left[ {{\text {cth}} \left( {\frac{{\phi {\varsigma _p}}}{{1 + {\phi ^2}}}} \right) - \cos \left( {m\pi } \right) \cos \left( {\frac{{p\pi }}{{1 + {\phi ^2}}}} \right) {\text {csch}} \left( {\frac{{\phi {\varsigma _p}}}{{1 + {\phi ^2}}}} \right) } \right] } \right\} \end{aligned}$$
(A2)
$$\begin{aligned}&{f_3}\left( {n,p,{\bar{\phi }} ,{\hat{\omega }} ,{{{\bar{K}}}_p},{{{\bar{L}}}_p}} \right) \nonumber \\&\quad = \frac{{2np{\pi ^2}{\bar{\phi }} \cos \left( {p\pi } \right) }}{{{\hat{\omega }} {{{\bar{\xi }} }_{n5}}{{{\bar{\xi }} }_{n6}}{{\bar{\xi }}_{n7}}{{{\bar{\xi }} }_{n8}}\sqrt{1 + {{{\bar{\phi }} }^2}} }} \nonumber \\&\qquad \times \, \left\{ {{{{\bar{\varsigma }} }_p}{{{\bar{\xi }} }_{n5}}{{{\bar{\xi }} }_{n7}}\left( {{{{\bar{L}}}_p} + {{{\bar{K}}}_p}{{\bar{\xi }}_{p1}}} \right) \left[ {{\text {cth}} \left( {\frac{{\bar{\phi }{{{\bar{\varsigma }} }_p}}}{{1 + {{{\bar{\phi }} }^2}}}} \right) - \cos \left( {n\pi } \right) \cos \left( {\frac{{p\pi }}{{1 + {{{\bar{\phi }} }^2}}}} \right) {\text {csch}} \left( {\frac{{{\bar{\phi }} {{\bar{\varsigma }}_p}}}{{1 + {{{\bar{\phi }} }^2}}}} \right) } \right] } \right. \nonumber \\&\qquad \left. { -\, {{{\bar{\varepsilon }} }_p}{{{\bar{\xi }} }_{n6}}{{{\bar{\xi }} }_{n8}}\left( {{{{\bar{L}}}_p} + {{{\bar{K}}}_p}{{{\bar{\xi }} }_{p2}}} \right) \left[ {{\text {cth}} \left( {\frac{{{\bar{\phi }} {{\bar{\varepsilon }}_p}}}{{1 + {{{\bar{\phi }} }^2}}}} \right) - \cos \left( {n\pi } \right) \cos \left( {\frac{{p\pi }}{{1 + {{{\bar{\phi }} }^2}}}} \right) {\text {csch}} \left( {\frac{{{\bar{\phi }} {{\bar{\varepsilon }}_p}}}{{1 + {{{\bar{\phi }} }^2}}}} \right) } \right] } \right\} \end{aligned}$$
(A3)

where \(\ {{\bar{\xi }} _{n5}} = {\pi ^2}\left[ {{{\left( {n + p} \right) }^2} + {n^2}{{{\bar{\phi }} }^2}} \right] + {{\bar{\phi }} ^2}\hat{\omega }\), \(\ {{\bar{\xi }} _{n6}} = {\pi ^2}\left[ {{{\left( {n + p} \right) }^2} + {n^2}{{{\bar{\phi }} }^2}} \right] - {{\bar{\phi }} ^2}\hat{\omega }\), \(\ {{\bar{\xi }} _{n7}} = {\pi ^2}\left[ {{{\left( {n - p} \right) }^2} + {n^2}{{{\bar{\phi }} }^2}} \right] + {{\bar{\phi }} ^2}\hat{\omega }\), \({{\bar{\xi }} _{n8}} = {\pi ^2}\left[ {{{\left( {n - p} \right) }^2} + {n^2}{{{\bar{\phi }} }^2}} \right] - {{\bar{\phi }} ^2}\hat{\omega }\), \({{\bar{\varepsilon }} _p} = \sqrt{{p^2}{\pi ^2} + \hat{\omega }\left( {1 + {{{\bar{\phi }} }^2}} \right) } \), \({{\bar{\varsigma }} _p} = \sqrt{{p^2}{\pi ^2} - {\hat{\omega }} \left( {1 + {{{\bar{\phi }} }^2}} \right) } \), \({{\bar{\xi }} _{p1}} = {p^2}{\pi ^2}\left( {1 - \nu } \right) + {\hat{\omega }} \left( {1 + {{{\bar{\phi }} }^2}} \right) \), and \({{\bar{\xi }} _{p2}} = {p^2}{\pi ^2}\left( {1 - \nu } \right) - \hat{\omega }\left( {1 + {{{\bar{\phi }} }^2}} \right) \).

$$\begin{aligned}&{f_4}\left( {n,p,{\bar{\phi }} ,{\hat{\omega }} ,{{{\bar{K}}}_p},{{{\bar{L}}}_p}} \right) \nonumber \\&\quad = \frac{{2np{\pi ^2}{\bar{\phi }} \cos \left( {p\pi } \right) }}{{{\hat{\omega }} {{{\bar{\xi }} }_{n5}}{{{\bar{\xi }} }_{n6}}{{\bar{\xi }}_{n7}}{{{\bar{\xi }} }_{n8}}\sqrt{1 + {{{\bar{\phi }} }^2}} }} \nonumber \\&\qquad \times \, \left\{ {{{{\bar{\varepsilon }} }_p}{{{\bar{\xi }} }_{n1}}{{{\bar{\xi }} }_{n6}}{{{\bar{\xi }} }_{n8}}\left( {{{{\bar{L}}}_p} + {{{\bar{K}}}_p}{{{\bar{\xi }} }_{p2}}} \right) \left[ {{\text {cth}} \left( {\frac{{{\bar{\phi }} {{{\bar{\varepsilon }} }_p}}}{{1 + {{{\bar{\phi }} }^2}}}} \right) - \cos \left( {n\pi } \right) \cos \left( {\frac{{p\pi }}{{1 + {{{\bar{\phi }} }^2}}}} \right) {\text {csch}} \left( {\frac{{{\bar{\phi }} {{{\bar{\varepsilon }} }_p}}}{{1 + {{{\bar{\phi }} }^2}}}} \right) } \right] } \right. \nonumber \\&\qquad -\, \left. {{{\bar{\varsigma }}_p}{{{\bar{\xi }} }_{n2}}{{{\bar{\xi }} }_{n5}}{{{\bar{\xi }} }_{n7}}\left( {{{{\bar{L}}}_p} + {{{\bar{K}}}_p}{{{\bar{\xi }} }_{p1}}} \right) \left[ {{\text {cth}} \left( {\frac{{{\bar{\phi }} {{\bar{\varsigma }}_p}}}{{1 + {{{\bar{\phi }} }^2}}}} \right) - \cos \left( {n\pi } \right) \cos \left( {\frac{{p\pi }}{{1 + {{{\bar{\phi }} }^2}}}} \right) {\text {csch}} \left( {\frac{{{\bar{\phi }} {{{\bar{\varsigma }} }_p}}}{{1 + {{{\bar{\phi }} }^2}}}} \right) } \right] } \right\} \end{aligned}$$
(A4)
$$\begin{aligned}&{f_5}\left( {m,p,\phi ,{\bar{\omega }} ,{{{\bar{E}}}_m},{{{\bar{F}}}_m}} \right) \nonumber \\&\quad = \frac{{2mp{\pi ^2}\phi }}{{{\bar{\omega }} {\xi _{m5}}{\xi _{m6}}{\xi _{m7}}{\xi _{m8}}\sqrt{1 + {\phi ^2}} }} \nonumber \\&\qquad \times \, \left\{ {{\zeta _m}{\xi _{m5}}{\xi _{m7}}\left( {{{{\bar{F}}}_m} + {{{\bar{E}}}_m}{\xi _{m1}}} \right) \left[ {{\text {cth}} \left( {\phi {\zeta _m}} \right) - \cos \left( {m\pi } \right) \cos \left( {p\pi } \right) {\text {csch}} \left( {\phi {\zeta _m}} \right) } \right] } \right. \nonumber \\&\qquad \left. { -\, {\eta _m}{\xi _{m6}}{\xi _{m8}}\left( {{{{\bar{F}}}_m} + {{{\bar{E}}}_m}{\xi _{m2}}} \right) \left[ {{\text {cth}} \left( {\phi {\eta _m}} \right) - \cos \left( {m\pi } \right) \cos \left( {p\pi } \right) {\text {csch}} \left( {\phi {\eta _m}} \right) } \right] } \right\} \end{aligned}$$
(A5)
$$\begin{aligned}&{f_6}\left( {n,p,{\bar{\phi }} ,{\hat{\omega }} ,{{{\bar{G}}}_n},{{{\bar{H}}}_n}} \right) \nonumber \\&\quad = \frac{{2np{\pi ^2}{\bar{\phi }} \cos \left( {p\pi } \right) }}{{{\hat{\omega }} {{{\bar{\xi }} }_{n5}}{{{\bar{\xi }} }_{n6}}{{\bar{\xi }}_{n7}}{{{\bar{\xi }} }_{n8}}\sqrt{1 + {{{\bar{\phi }} }^2}} }} \nonumber \\&\qquad \times \, \left\{ {{{{\bar{\zeta }} }_n}{{{\bar{\xi }} }_{n5}}{{{\bar{\xi }} }_{n7}}\left( {{{{\bar{H}}}_n} + {{{\bar{G}}}_n}{{\bar{\xi }}_{n1}}} \right) \left[ {{\text {cth}} \left( {{\bar{\phi }} {{{\bar{\zeta }} }_n}} \right) - \cos \left( {n\pi } \right) \cos \left( {p\pi } \right) {\text {csch}} \left( {{\bar{\phi }} {{{\bar{\zeta }} }_n}} \right) } \right] } \right. \nonumber \\&\qquad \left. { -\, {{{\bar{\eta }} }_n}{{{\bar{\xi }} }_{n6}}{{{\bar{\xi }} }_{n8}}\left( {{{{\bar{H}}}_n} + {{{\bar{G}}}_n}{{{\bar{\xi }} }_{n2}}} \right) \left[ {{\text {cth}} \left( {\phi {{{\bar{\eta }} }_n}} \right) - \cos \left( {n\pi } \right) \cos \left( {p\pi } \right) {\text {csch}} \left( {\bar{\phi }{{{\bar{\eta }} }_n}} \right) } \right] } \right\} \end{aligned}$$
(A6)
$$\begin{aligned}&{f_7}\left( {m,p,\phi ,{\bar{\omega }} ,{{{\bar{E}}}_m},{{{\bar{F}}}_m}} \right) \nonumber \\&\quad = \frac{{2mp{\pi ^2}\phi }}{{{\bar{\omega }} {\xi _{m5}}{\xi _{m6}}{\xi _{m7}}{\xi _{m8}}\sqrt{1 + {\phi ^2}} }} \nonumber \\&\qquad \times \, \left\{ {{\eta _m}{\xi _{p1}}{\xi _{m6}}{\xi _{m8}}\left( {{{{\bar{F}}}_m} + {{{\bar{E}}}_m}{\xi _{m2}}} \right) \left[ {{\text {cth}} \left( {\phi {\eta _m}} \right) - \cos \left( {m\pi } \right) \cos \left( {p\pi } \right) {\text {csch}} \left( {\phi {\eta _m}} \right) } \right] } \right. \nonumber \\&\qquad \left. { -\, {\zeta _m}{\xi _{p2}}{\xi _{m5}}{\xi _{m7}}\left( {{{{\bar{F}}}_m} + {{{\bar{E}}}_m}{\xi _{m1}}} \right) \left[ {{\text {cth}} \left( {\phi {\zeta _m}} \right) - \cos \left( {m\pi } \right) \cos \left( {p\pi } \right) {\text {csch}} \left( {\phi {\zeta _m}} \right) } \right] } \right\} \end{aligned}$$
(A7)
$$\begin{aligned}&{f_8}\left( {n,p,{\bar{\phi }} ,{\hat{\omega }} ,{{\bar{G}}_n},{{{\bar{H}}}_n}} \right) \nonumber \\&\quad = \frac{{2np{\pi ^2}{\bar{\phi }} \cos \left( {p\pi } \right) }}{{{\hat{\omega }} {{{\bar{\xi }} }_{n5}}{{{\bar{\xi }} }_{n6}}{{{\bar{\xi }} }_{n7}}{{{\bar{\xi }} }_{n8}}\sqrt{1 + {{{\bar{\phi }} }^2}} }} \nonumber \\&\qquad \times \, \left\{ {{{{\bar{\eta }} }_n}{{{\bar{\xi }} }_{p1}}{{{\bar{\xi }} }_{n6}}{{{\bar{\xi }} }_{n8}}\left( {{{{\bar{H}}}_n} + {{{\bar{G}}}_n}{{{\bar{\xi }} }_{n2}}} \right) \left[ {{\text {cth}} \left( {\phi {{{\bar{\eta }} }_n}} \right) - \cos \left( {n\pi } \right) \cos \left( {p\pi } \right) {\text {csch}} \left( {\bar{\phi }{{{\bar{\eta }} }_n}} \right) } \right] } \right. \nonumber \\&\qquad \left. -\, {{{{\bar{\zeta }} }_n}{{{\bar{\xi }} }_{p2}}{{{\bar{\xi }} }_{n5}}{{{\bar{\xi }} }_{n7}}\left( {{{{\bar{H}}}_n} + {{{\bar{G}}}_n}{{{\bar{\xi }} }_{n1}}} \right) \left[ {{\text {cth}} \left( {{\bar{\phi }} {{{\bar{\zeta }} }_n}} \right) - \cos \left( {n\pi } \right) \cos \left( {p\pi } \right) {\text {csch}} \left( {{\bar{\phi }} {{{\bar{\zeta }} }_n}} \right) } \right] } \right\} \end{aligned}$$
(A8)
$$\begin{aligned}&{f_9}\left( {m,n,\phi ,{\bar{\omega }} ,{{{\bar{G}}}_n},{{{\bar{H}}}_n}} \right) \nonumber \\&\quad = \frac{{2mn{\pi ^2}{\phi ^2}\cos \left( {m\pi } \right) \cos \left( {n\pi } \right) \left\{ {{{{\bar{H}}}_n} + {{{\bar{G}}}_n}{\pi ^2}\left[ {{m^2}{\phi ^2} + {n^2}\left( {2 - \nu } \right) } \right] } \right\} }}{{{\phi ^4}{{{\bar{\omega }} }^2} - {\pi ^4}{{\left( {{n^2} + {m^2}{\phi ^2}} \right) }^2}}} \end{aligned}$$
(A9)
$$\begin{aligned}&{f_{10}}\left( {m,p,\phi ,{\bar{\omega }} ,{{\bar{K}}_p},{{{\bar{L}}}_p}} \right) \nonumber \\&\quad = \frac{\pi }{{2{\bar{\omega }} {\xi _{m5}}{\xi _{m6}}{\xi _{m7}}{\xi _{m8}}{{\left( {1 + {\phi ^2}} \right) }^{3/2}}}} \nonumber \\&\qquad \times \, \left\{ {{\xi _{m6}}{\xi _{m8}}\left( {{{{\bar{L}}}_p} + {{{\bar{K}}}_p}{\xi _{p2}}} \right) \left[ {p\pi \phi \left( {4m\varepsilon _p^2 + {\xi _{m4}}{\xi _{m5}} + {\xi _{m3}}{\xi _{m7}}} \right) } \right. } \right. \nonumber \\&\qquad \left. { +\, {\varepsilon _p}{\xi _{p4}}\left( {{\xi _{m3}} + {\xi _{m4}}} \right) \cos \left( {m\pi } \right) \sin \left( {\frac{{p\pi }}{{1 + {\phi ^2}}}} \right) {\text {csch}} \left( {\frac{{\phi {\varepsilon _p}}}{{1 + {\phi ^2}}}} \right) } \right] \nonumber \\&\qquad -\, {\xi _{m5}}{\xi _{m7}}\left( {{{{\bar{L}}}_p} + {{{\bar{K}}}_p}{\xi _{p1}}} \right) \left[ {p\pi \phi \left( {4m\varsigma _p^2 + {\xi _{m4}}{\xi _{m6}} + {\xi _{m3}}{\xi _{m8}}} \right) } \right. \nonumber \\&\qquad \left. {\left. { +\, {\varsigma _p}{\xi _{p3}}\left( {{\xi _{m3}} + {\xi _{m4}}} \right) \cos \left( {m\pi } \right) \sin \left( {\frac{{p\pi }}{{1 + {\phi ^2}}}} \right) {\text {csch}} \left( {\frac{{\phi {\varsigma _p}}}{{1 + {\phi ^2}}}} \right) } \right] } \right\} \end{aligned}$$
(A10)

where \({\xi _{m3}} = m + p + m{\phi ^2}\), \({\xi _{m4}} = m - p + m{\phi ^2}\), \({\xi _{p3}} = {\pi ^2}\left[ {{p^2} - {m^2}\left( {1 + {\phi ^2}} \right) } \right] + {\phi ^2}{\bar{\omega }} \), and \({\xi _{p4}} = {\pi ^2}\left[ {{p^2} - {m^2}\left( {1 + {\phi ^2}} \right) } \right] - {\phi ^2}{\bar{\omega }} \).

$$\begin{aligned} {f_{11}}\left( {m,n,{\bar{\phi }} ,{\hat{\omega }} ,{{{\bar{E}}}_m},{{{\bar{F}}}_m}} \right)= & {} \frac{{2mn{\pi ^2}{{{\bar{\phi }} }^2}\cos \left( {m\pi } \right) \cos \left( {n\pi } \right) \left\{ {{{{\bar{F}}}_m} + {{{\bar{E}}}_m}{\pi ^2}\left[ {{n^2}{{{\bar{\phi }} }^2} + {m^2}\left( {2 - \nu } \right) } \right] } \right\} }}{{{{{\bar{\phi }} }^4}{{{\hat{\omega }} }^2} - {\pi ^4}{{\left( {{m^2} + {n^2}{{{\bar{\phi }} }^2}} \right) }^2}}} \end{aligned}$$
(A11)
$$\begin{aligned} {f_{12}}\left( {n,p,{\bar{\phi }} ,{\hat{\omega }} ,{{{\bar{K}}}_p},{{\bar{L}}_p}} \right)= & {} \frac{{\cos \left( {p\pi } \right) \pi }}{{2\hat{\omega }{{{\bar{\xi }} }_{n5}}{{{\bar{\xi }} }_{n6}}{{{\bar{\xi }} }_{n7}}{{\bar{\xi }}_{n8}}{{\left( {1 + {{{\bar{\phi }} }^2}} \right) }^{3/2}}}} \nonumber \\&\times \, \left\{ {{{{\bar{\xi }} }_{n6}}{{{\bar{\xi }} }_{n8}}\left( {{{\bar{L}}_p} + {{{\bar{K}}}_p}{{{\bar{\xi }} }_{p2}}} \right) \left[ {p\pi \bar{\phi }\left( {4n{\bar{\varepsilon }} _p^2 + {{{\bar{\xi }} }_{n4}}{{{\bar{\xi }} }_{n5}} + {{{\bar{\xi }} }_{n3}}{{{\bar{\xi }} }_{n7}}} \right) } \right. } \right. \nonumber \\&\left. { +\,{{{\bar{\varepsilon }} }_p}{{{\bar{\xi }} }_{p4}}\left( {{{\bar{\xi }}_{n3}} + {{{\bar{\xi }} }_{n4}}} \right) \cos \left( {n\pi } \right) \sin \left( {\frac{{p\pi }}{{1 + {{{\bar{\phi }} }^2}}}} \right) {\text {csch}} \left( {\frac{{{\bar{\phi }} {{\bar{\varepsilon }}_p}}}{{1 + {{{\bar{\phi }} }^2}}}} \right) } \right] \nonumber \\&-\, {{{\bar{\xi }} }_{n5}}{{{\bar{\xi }} }_{n7}}\left( {{{{\bar{L}}}_p} + {{{\bar{K}}}_p}{{{\bar{\xi }} }_{p1}}} \right) \left[ {p\pi {\bar{\phi }} \left( {4n{\bar{\varsigma }} _p^2 + {{{\bar{\xi }} }_{n4}}{{{\bar{\xi }} }_{n6}} + {{{\bar{\xi }} }_{n3}}{{{\bar{\xi }} }_{n8}}} \right) } \right. \nonumber \\&\left. +\,{{{{\bar{\varsigma }} }_p}{{{\bar{\xi }} }_{p3}}\left( {{{{\bar{\xi }} }_{n3}} + {{{\bar{\xi }} }_{n4}}} \right) \cos \left( {n\pi } \right) \sin \left( {\frac{{p\pi }}{{1 + {{{\bar{\phi }} }^2}}}} \right) {\text {csch}} \left( {\frac{{{\bar{\phi }} {{{\bar{\varsigma }} }_p}}}{{1 + {{{\bar{\phi }} }^2}}}} \right) } \right\} \end{aligned}$$
(A12)

where \({{\bar{\xi }} _{n3}} = n + p + n{{\bar{\phi }} ^2}\), \({{\bar{\xi }} _{n4}} = n - p + n{{\bar{\phi }} ^2}\), \({{\bar{\xi }} _{p3}} = {\pi ^2}\left[ {{p^2} - {n^2}\left( {1 + {{{\bar{\phi }} }^2}} \right) } \right] + {{\bar{\phi }} ^2}{\hat{\omega }} \), and \({{\bar{\xi }} _{p4}} = {\pi ^2}\left[ {{p^2} - {n^2}\left( {1 + {{{\bar{\phi }} }^2}} \right) } \right] - {{\bar{\phi }} ^2}{\hat{\omega }} \).

$$\begin{aligned} {f_{13}}\left( {m,p,\phi ,{\bar{\omega }} ,{{{\bar{E}}}_m},{{{\bar{F}}}_m}} \right)= & {} \frac{{mp{\pi ^2}\phi }}{{{\bar{\omega }} {\xi _{m5}}{\xi _{m6}}{\xi _{m7}}{\xi _{m8}}\sqrt{1 + {\phi ^2}} }} \nonumber \\&\times \, \left\{ {{\xi _{m5}}{\xi _{m7}}\left( {{{{\bar{F}}}_m} + {{{\bar{E}}}_m}{\xi _{m1}}} \right) \left[ {{\xi _{p3}} + 2\zeta _m^2\left( {1 + {\phi ^2}} \right) } \right] } \right. \nonumber \\&\left. { -\, {\xi _{m6}}{\xi _{m8}}\left( {{{{\bar{F}}}_m} + {{\bar{E}}_m}{\xi _{m2}}} \right) \left[ {{\xi _{p4}} + 2\eta _m^2\left( {1 + {\phi ^2}} \right) } \right] } \right\} \end{aligned}$$
(A13)
$$\begin{aligned} {f_{14}}\left( {n,p,{\bar{\phi }} ,{\hat{\omega }} ,{{{\bar{G}}}_n},{{\bar{H}}_n}} \right)= & {} \frac{{np{\pi ^2}{\bar{\phi }} \cos \left( {p\pi } \right) }}{{{\hat{\omega }} {{{\bar{\xi }} }_{n5}}{{{\bar{\xi }} }_{n6}}{{\bar{\xi }}_{n7}}{{{\bar{\xi }} }_{n8}}\sqrt{1 + {{{\bar{\phi }} }^2}} }} \nonumber \\&\times \, \left\{ {{{{\bar{\xi }} }_{n5}}{{{\bar{\xi }} }_{n7}}\left( {{{{\bar{H}}}_n} + {{{\bar{G}}}_n}{{{\bar{\xi }} }_{n1}}} \right) \left[ {{{{\bar{\xi }} }_{p3}} + 2{\bar{\zeta }} _n^2\left( {1 + {{{\bar{\phi }} }^2}} \right) } \right] } \right. \nonumber \\&\left. { -\, {{{\bar{\xi }} }_{n6}}{{{\bar{\xi }} }_{n8}}\left( {{{{\bar{H}}}_n} + {{\bar{G}}_n}{{{\bar{\xi }} }_{n2}}} \right) \left[ {{{{\bar{\xi }} }_{p4}} + 2\bar{\eta }_n^2\left( {1 + {{{\bar{\phi }} }^2}} \right) } \right] } \right\} \end{aligned}$$
(A14)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., An, D., Xu, H. et al. On the symplectic superposition method for analytic free vibration solutions of right triangular plates. Arch Appl Mech 91, 187–203 (2021). https://doi.org/10.1007/s00419-020-01763-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01763-7

Keywords

Navigation