Skip to main content
Log in

UHPLC-QTOFMS-based metabolomic analysis of serum and urine in rats treated with musalais containing varying ethyl carbamate content

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The aim of this work is to investigate the effect of the ethyl carbamate (EC) content in musalais on the metabolism of rats. Electron beam irradiation was performed to decrease the content of EC in musalais, and Sprague Dawley rats were subjected to intragastric administration of musalais with varying EC content (high, medium, and low groups). Control rats were fed normally without any treatment. Serum and urine samples were analyzed using ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry. Principal component analysis and orthogonal projections to latent structures discriminant analysis (OPLS-DA) were performed to detect changes in the metabolite profile in the serum and urine in order to identify the differential metabolites and metabolic pathways. The results demonstrated clear differences in the serum and urine metabolic patterns between control and treatment groups. Ions in treatment groups with variable importance in the projection of >1 (selected from the OPLS-DA loading plots) and Ps < 0.05 (Student t test) compared to control group were identified as candidate metabolites. Analysis of the metabolic pathways relevant to the identified differential metabolites revealed that high EC content in musalais (10 mg/kg) mainly affected rats through valine, leucine, and isoleucine biosynthesis and nicotinate and nicotinamide metabolism, which were associated with energy metabolism. In addition, this work suggests that EC can induce oxidative stress via inhibition of glycine content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li GM, Dongqi G, Christensen M, Xujie H, Hongmei L, Yingge F, et al. Preliminary analysis of yeast communities associated with the spontaneous fermentation of Musalais, a traditional alcoholic beverage of southern Xinjiang, China. S Afr J Enol Vitic. 2012;33(1):95–104.

    Google Scholar 

  2. Wang WH, Cao Y, Mo JT, Tian MX, Liu F. Determination of Procyanidin from Musalais by high performance liquid chromatography method. J Chin Inst Food Sci Technol. 2017;17(3):282–8.

    Google Scholar 

  3. Ryu D, Choi B, Kim E, Park S, Paeng H, Kim CI, et al. Determination of ethyl carbamate in alcoholic beverages and fermented foods sold in Korea. Toxicol Res. 2015;31(3):289–97. https://doi.org/10.5487/TR.2015.31.3.289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nomura T. Urethan (ethyl carbamate) as a cosolvent of drugs commonly used parenterally in humans. Cancer Res. 1975;35(10):2895–9.

    CAS  PubMed  Google Scholar 

  5. Shirasaka Y, Wasterlain CG. The effect of urethane anesthesia on evoked potentials in dentate gyrus. Eur J Pharmacol. 1995;282(1–3):11–7. https://doi.org/10.1016/0014-2999(95)00244-f.

    Article  CAS  PubMed  Google Scholar 

  6. Tanida M, Shen J, Kubomura D, Nagai K. Effects of anserine on the renal sympathetic nerve activity and blood pressure in urethane-anesthetized rats. Physiol Res. 2010;59(2):177–85.

    CAS  PubMed  Google Scholar 

  7. Chen T, Lu L, Xu C, Lin X, Leung YK, Ho SM, et al. Inhibition role of Atherogenic diet on ethyl carbamate induced lung tumorigenesis in C57BL/6J mice. Sci Rep. 2017;7(1):4723. https://doi.org/10.1038/s41598-017-05053-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stoewsand GS, Anderson JL, Munson L. Inhibition by wine of tumorigenesis induced by ethyl carbamate (urethane) in mice. Food Chem Toxicol. 1991;29(5):291–5. https://doi.org/10.1016/0278-6915(91)90199-h.

    Article  CAS  PubMed  Google Scholar 

  9. Beland FA, Benson RW, Mellick PW, Kovatch RM, Roberts DW, Fang JL, et al. Effect of ethanol on the tumorigenicity of urethane (ethyl carbamate) in B6C3F1 mice. Food Chem Toxicol. 2005;43(1):1–19. https://doi.org/10.1016/j.fct.2004.07.018.

    Article  CAS  PubMed  Google Scholar 

  10. IARC. IARC monographs on the evaluation of carcinogenic risks to humans. http://monographsiarcfr/ENG/Monographs/vol96/indexphp. 2010.

  11. Pandey M, Gupta KP. Involvement of STAT3, NF-kappaB and associated downstream molecules before and after the onset of urethane induced lung tumors in mouse. Environ Toxicol Pharmacol. 2012;34(2):502–11. https://doi.org/10.1016/j.etap.2012.06.007.

    Article  CAS  PubMed  Google Scholar 

  12. Wang IC, Meliton L, Ren X, Zhang Y, Balli D, Snyder J, et al. Deletion of Forkhead box M1 transcription factor from respiratory epithelial cells inhibits pulmonary tumorigenesis. PLoS One. 2009;4(8):e6609. https://doi.org/10.1371/journal.pone.0006609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gowd V, Su H, Karlovsky P, Chen W. Ethyl carbamate: an emerging food and environmental toxicant. Food Chem. 2018;248:312–21. https://doi.org/10.1016/j.foodchem.2017.12.072.

    Article  CAS  PubMed  Google Scholar 

  14. Du G, Sun T, Zhang Y, Lin H, Li J, Liu W, et al. The mitochondrial dysfunction plays an important role in urethane-induced lung carcinogenesis. Eur J Pharmacol. 2013;715(1–3):395–404. https://doi.org/10.1016/j.ejphar.2013.04.031.

    Article  CAS  PubMed  Google Scholar 

  15. Colombo NB, Rangel MP, Martins V, Hage M, Gelain DP, Barbeiro DF, et al. Caryocar brasiliense camb protects against genomic and oxidative damage in urethane-induced lung carcinogenesis. Braz J Med Biol Res. 2015;48(9):852–62. https://doi.org/10.1590/1414-431X20154467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen W, Li Y, Bao T, Gowd V. Mulberry fruit extract affords protection against ethyl carbamate-induced cytotoxicity and oxidative stress. Oxidative Med Cell Longev. 2017;2017:1594963. https://doi.org/10.1155/2017/1594963.

    Article  Google Scholar 

  17. Brown FF, Campbell ID, Kuchel PW, Rabenstein DC. Human erythrocyte metabolism studies by 1H spin echo NMR. FEBS Lett. 1977;82(1):12–6. https://doi.org/10.1016/0014-5793(77)80875-2.

    Article  CAS  PubMed  Google Scholar 

  18. Beale DJ, Pinu FR, Kouremenos KA, Poojary MM, Narayana VK, Boughton BA, et al. Review of recent developments in GC-MS approaches to metabolomics-based research. Metabolomics. 2018;14(11):152. https://doi.org/10.1007/s11306-018-1449-2.

    Article  PubMed  Google Scholar 

  19. Shen J, Pu ZJ, Kai J, Kang A, Tang YP, Shang LL, et al. Comparative metabolomics analysis for the compatibility and incompatibility of kansui and licorice with different ratios by UHPLC-QTOF/MS and multivariate data analysis. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1057:40–5. https://doi.org/10.1016/j.jchromb.2017.04.042.

    Article  CAS  PubMed  Google Scholar 

  20. Gika HG, Theodoridis GA, Plumb RS, Wilson ID. Current practice of liquid chromatography-mass spectrometry in metabolomics and metabonomics. J Pharm Biomed Anal. 2014;87:12–25. https://doi.org/10.1016/j.jpba.2013.06.032.

    Article  CAS  PubMed  Google Scholar 

  21. Long NP, Yoon SJ, Anh NH, Nghi TD, Lim DK, Hong YJ, et al. A systematic review on metabolomics-based diagnostic biomarker discovery and validation in pancreatic cancer. Metabolomics. 2018;14(8):109. https://doi.org/10.1007/s11306-018-1404-2.

    Article  CAS  PubMed  Google Scholar 

  22. Tunon J, Barbas C, Blanco-Colio L, Burillo E, Lorenzo O, Martin-Ventura JL, et al. Proteomics and metabolomics in biomarker discovery for cardiovascular diseases: progress and potential. Expert Rev Proteomics. 2016;13(9):857–71. https://doi.org/10.1080/14789450.2016.1217775.

    Article  CAS  PubMed  Google Scholar 

  23. Banoei MM, Casault C, Metwaly SM, Winston BW. Metabolomics and biomarker discovery in traumatic brain injury. J Neurotrauma. 2018;35(16):1831–48. https://doi.org/10.1089/neu.2017.5326.

    Article  PubMed  Google Scholar 

  24. Hurtado MO, Kohler I, de Lange EC. Next-generation biomarker discovery in Alzheimer's disease using metabolomics - from animal to human studies. Bioanalysis. 2018;10(18):1525–46. https://doi.org/10.4155/bio-2018-0135.

    Article  CAS  PubMed  Google Scholar 

  25. van Dorsten FA, Grun CH, van Velzen EJ, Jacobs DM, Draijer R, van Duynhoven JP. The metabolic fate of red wine and grape juice polyphenols in humans assessed by metabolomics. Mol Nutr Food Res. 2010;54(7):897–908. https://doi.org/10.1002/mnfr.200900212.

    Article  CAS  PubMed  Google Scholar 

  26. Boto-Ordonez M, Urpi-Sarda M, Queipo-Ortuno MI, Corella D, Tinahones FJ, Estruch R, et al. Microbial metabolomic fingerprinting in urine after regular dealcoholized red wine consumption in humans. J Agric Food Chem. 2013;61(38):9166–75. https://doi.org/10.1021/jf402394c.

    Article  CAS  PubMed  Google Scholar 

  27. Vazquez-Fresno R, Llorach R, Perera A, Mandal R, Feliz M, Tinahones FJ, et al. Clinical phenotype clustering in cardiovascular risk patients for the identification of responsive metabotypes after red wine polyphenol intake. J Nutr Biochem. 2016;28:114–20. https://doi.org/10.1016/j.jnutbio.2015.10.002.

    Article  CAS  PubMed  Google Scholar 

  28. Nannini G, Meoni G, Amedei A, Tenori L. Metabolomics profile in gastrointestinal cancers: update and future perspectives. World J Gastroenterol. 2020;26(20):2514–32. https://doi.org/10.3748/wjg.v26.i20.2514.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pan Z, Raftery D. Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Anal Bioanal Chem. 2007;387(2):525–7. https://doi.org/10.1007/s00216-006-0687-8.

    Article  CAS  PubMed  Google Scholar 

  30. Vignoli A, Ghini V, Meoni G, Licari C, Takis PG, Tenori L et al. High-Throughput Metabolomics by 1D NMR. Angew Chem Int Ed Engl. 2019;58(4):968–94. https://doi.org/10.1002/anie.201804736.

  31. Wu HD, Wang L, Zhan X, Wang B, Wu J, Zhou AD. A UPLC-Q-TOF/MS-based plasma metabolomics approach reveals the mechanism of compound Kushen injection-based intervention against non-small cell lung cancer in Lewis tumor-bearing mice. Phytomedicine. 2020;76:153259. https://doi.org/10.1016/j.phymed.2020.153259.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Y, Gao J, Zhang Q, Wang K, Yao W, Bao B, et al. Interpretation of Euphorbia Kansui stir-fried with vinegar treating malignant ascites by a UPLC-Q-TOF/MS based rat serum and urine metabolomics strategy coupled with network pharmacology. Molecules. 2018;23(12). https://doi.org/10.3390/molecules23123246.

  33. Zhihua Jiao YD, Chen Q. Ethyl carbamate in fermented beverages: presence, analytical chemistry, formation mechanism, and mitigation proposals. Compr Rev Food Sci Food Saf. 2014;13(4):611–26.

    Article  Google Scholar 

  34. Xinrui Zhao GD, Zou H, Fub J, Zhou J, Chen J. Progress in preventing the accumulation of ethyl carbamate in alcoholic beverages. Trends Food Sci Technol. 2013;32:97–107.

    Article  Google Scholar 

  35. Zhang P, Hu X. Metabolic engineering of arginine permeases to reduce the formation of urea in Saccharomyces cerevisiae. World J Microbiol Biotechnol. 2018;34(3):47. https://doi.org/10.1007/s11274-018-2430-y.

    Article  CAS  PubMed  Google Scholar 

  36. Lv M, Mei K, Zhang H, Xu D, Yang W. Effects of electron beam irradiation on the biochemical properties and structure of myofibrillar protein from Tegillarca granosa meat. Food Chem. 2018;254:64–9. https://doi.org/10.1016/j.foodchem.2018.01.165.

    Article  CAS  PubMed  Google Scholar 

  37. Derakhshan Z, Oliveri Conti G, Heydari A, Hosseini MS, Mohajeri FA, Gheisari H, et al. Survey on the effects of electron beam irradiation on chemical quality and sensory properties on quail meat. Food Chem Toxicol. 2018;112:416–20. https://doi.org/10.1016/j.fct.2017.12.015.

    Article  CAS  PubMed  Google Scholar 

  38. Silva VH, Dos Santos Batista AP, Silva Costa Teixeira AC, Borrely SI. Degradation and acute toxicity removal of the antidepressant fluoxetine (Prozac(®)) in aqueous systems by electron beam irradiation. Environ Sci Pollut Res Int. 2016;23(12):11927–36. https://doi.org/10.1007/s11356-016-6410-1.

    Article  CAS  PubMed  Google Scholar 

  39. Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 2011;6(7):1060–83. https://doi.org/10.1038/nprot.2011.335.

    Article  CAS  PubMed  Google Scholar 

  40. Yin J, Xie J, Guo X, Ju L, Li Y, Zhang Y. Plasma metabolic profiling analysis of cyclophosphamide-induced cardiotoxicity using metabolomics coupled with UPLC/Q-TOF-MS and ROC curve. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1033-1034:428–35. https://doi.org/10.1016/j.jchromb.2016.08.042.

    Article  CAS  PubMed  Google Scholar 

  41. Edoardo S, Huub CJH, Age KS, Johan AW, Margerit MWBH. Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics. 2013;10(13):361–74.

    Google Scholar 

  42. Leruez S, Marill A, Bresson T, de Saint Martin G, Buisset A, Muller J, et al. A metabolomics profiling of Glaucoma points to mitochondrial dysfunction, senescence, and polyamines deficiency. Invest Ophthalmol Vis Sci. 2018;59(11):4355–61. https://doi.org/10.1167/iovs.18-24938.

    Article  CAS  PubMed  Google Scholar 

  43. Nie C, He T, Zhang W, Zhang G, Ma X. Branched chain amino acids: beyond nutrition metabolism. Int J Mol Sci. 2018;19(4). https://doi.org/10.3390/ijms19040954.

  44. Kimball SR, Jefferson LS. Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. J Nutr. 2006;136(1 Suppl):227S–31S. https://doi.org/10.1093/jn/136.1.227S.

    Article  CAS  PubMed  Google Scholar 

  45. Melnik BC, John SM, Carrera-Bastos P, Cordain L. The impact of cow's milk-mediated mTORC1-signaling in the initiation and progression of prostate cancer. Nutr Metab (Lond). 2012;9(1):74. https://doi.org/10.1186/1743-7075-9-74.

    Article  CAS  Google Scholar 

  46. Liu Y, Dong W, Shao J, Wang Y, Zhou M, Sun H. Branched-chain amino acid negatively regulates KLF15 expression via PI3K-AKT pathway. Front Physiol. 2017;8:853. https://doi.org/10.3389/fphys.2017.00853.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ma Y, Bao Y, Wang S, Li T, Chang X, Yang G, et al. Anti-inflammation effects and potential mechanism of Saikosaponins by regulating nicotinate and nicotinamide metabolism and arachidonic acid metabolism. Inflammation. 2016;39(4):1453–61. https://doi.org/10.1007/s10753-016-0377-4.

    Article  CAS  PubMed  Google Scholar 

  48. Feng Y, Wang Y, Jiang C, Fang Z, Zhang Z, Lin X, et al. Nicotinamide induces mitochondrial-mediated apoptosis through oxidative stress in human cervical cancer HeLa cells. Life Sci. 2017;181:62–9. https://doi.org/10.1016/j.lfs.2017.06.003.

    Article  CAS  PubMed  Google Scholar 

  49. Wang Z, Zhang J, Wang L, Li W, Chen L, Li J, et al. Glycine mitigates renal oxidative stress by suppressing Nox4 expression in rats with streptozotocin-induced diabetes. J Pharmacol Sci. 2018;137(4):387–94. https://doi.org/10.1016/j.jphs.2018.08.005.

    Article  CAS  PubMed  Google Scholar 

  50. Enns GM, Cowan TM. Glutathione as a redox biomarker in mitochondrial disease-implications for therapy. J Clin Med. 2017;6(5). https://doi.org/10.3390/jcm6050050.

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 31360409, 31471667), Program for Yong and Middle-aged Leading Talents of China Xinjiang Production and Construction Corps (2017CB009), and Selection and Cultivation Project of “Talents of Xinjiang production and Construction Corps”.

Author information

Authors and Affiliations

Authors

Contributions

WHW and ZJH designed this study. WHW, DQG, and YJX analyzed the data. WHW wrote the manuscript. ZJH revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to ZhanJiang Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All animal experiments were conducted in Wuhan Myhalic Biotechnology Co., Ltd. and approved by the Institutional Review Board of Wuhan Myhalic Biotechnology Co., Ltd. based on the ethical Guidelines for Animal Care and Use of the Model Animal Research Institute (approval number: HLK-20181209-01).

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 217 kb)

ESM 2

(XLSX 66 kb)

ESM 3

(XLSX 699 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Han, Z., Guo, D. et al. UHPLC-QTOFMS-based metabolomic analysis of serum and urine in rats treated with musalais containing varying ethyl carbamate content. Anal Bioanal Chem 412, 7627–7637 (2020). https://doi.org/10.1007/s00216-020-02900-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02900-5

Keywords

Navigation