Skip to main content
Log in

Microscopic substructures of stainless steel 304 undergoing a uniaxial ratcheting deformation

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Under asymmetrical stress-controlled cyclic loading accompanied by ratcheting, the evolution of microscopic substructures of stainless steel 304 (SS304), a face-centered cubic metal, was detected using transmission electron microscopy (TEM). This observation demonstrates that dislocation slip is the main mechanism of uniaxial ratcheting in the non-steady stage (stage I). Dislocation proliferate rapidly duo to the high stress level of the cyclic tests, and dislocation density increases continuously with the the number of cycles. The ratcheting rate decreases continuously due to the interaction of moveable dislocations, and the planar dislocation substructures (dislocation pileups and tangles) are the dominant patterns in this stage. In the later stage I, distinct lath \(\alpha \)-martensite was observed in the material due to the nucleation of martensite and the phase transformation zones increase gradually with the growth of axial ratcheting strain in the stage II of uniaxial ratcheting. The multiply and cross-slip were activated gradually in increasing numbers of grains, and the prevailing dislocation configurations evolve into more complicated and stable ones (dislocation walls and cells). In addition the dislocation configurations after various prescribed tensile strain of the monotonic tension and creep deformation with three different holding times were also observed by TEM. Comparing the evolution of microscopic substructures in various loading modes, the physical mechanism of uniaxial ratcheting of SS304 can be revealed as combination of the evolution of dislocation configurations and martensite transformation in the stage II of uniaxial ratcheting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ohno, N.: Recent topics in constitutive modeling of cyclic plasticity and viscoplasticity. Appl. Mech. Rev. 43, 283–295 (1990)

    Article  Google Scholar 

  2. Chaboche, J.L.: A review of some plasticity and viscoplasticity constitutive theories. Int. J. Plast. 24, 1642–1693 (2008)

    Article  Google Scholar 

  3. Liew, K.M., Pan, Z., Zhang, L.W.: The recent progress of functionally graded CNT reinforced composites and structures. Sci. China Phys. Mech. Astron. 63(3), 234601 (2020)

    Article  Google Scholar 

  4. Khutia, N., Dey, P.P., Hassan, T.: An improved nonproportional cyclic plasticity model for multiaxial low-cycle fatigue and ratcheting responses of 304 stainless steel. Mech. Mater. 91, 12–25 (2015)

    Article  Google Scholar 

  5. Kang, G.Z., Bruhns, O.T., Saï, K.: Cyclic polycrystalline visco-plastic model for ratchetting of 316l stainless steel. Comput. Mater. Sci. 50, 1399–1405 (2011)

    Article  Google Scholar 

  6. Yu, C., Kang, G.Z., Kan, Q.H.: Crystal plasticity based constitutive model of niti shape memory alloy considering different mechanisms of inelastic deformation. Int. J. Plast. 54, 132–162 (2014)

    Article  Google Scholar 

  7. Dong, Y.W., Kang, G.Z., Yu, C.: A dislocation-based cyclic polycrystalline visco-plastic constitutive model for ratchetting of metals with face-centered cubic crystal structure. Comput. Mater Sci. 91, 75–82 (2014)

    Article  Google Scholar 

  8. Zhang, L.W., Ji, W.M., Hu, Y., Liew, K.M.: Atomistic insights into the tunable transition from cavitation to crazing in diamond nanothread-reinforced polymer composites. Research 2020, 7815462 (2020)

    Google Scholar 

  9. Dong, Y.W., Xie, D.Y., Zhang, Y., Xiao, X.: On the study of cyclic crystal plasticity ratchetting constitutive model for polycrystalline pure copper. Int. J. Appl. Mech. 11, 1950041 (2019)

    Article  Google Scholar 

  10. Wang, W., Liu, J.X., Soh, A.K.: Crystal plasticity modeling of strain rate and temperature sensitivities in magnesium. Acta Mech. 230, 2071–2086 (2019)

    Article  MathSciNet  Google Scholar 

  11. Taleb, L., Cailletaud, G., Blaj, L.: Numerical simulation of complex ratcheting tests with a multi-mechanism model type. Int. J. Plast. 22, 724–753 (2006)

    Article  Google Scholar 

  12. Velay, V., Bernhart, G., Penazzi, L.: Cyclic behavior modeling of a tempered martensitic hot work tool steel. Int. J. Plast. 22, 459–496 (2006)

    Article  Google Scholar 

  13. Saï, K.: Multi-mechanism models: present state and future trends. Int. J. Plast. 27, 250–281 (2011)

    Article  Google Scholar 

  14. Wang, B., Kang, G.Z., Wu, W.P., Zhou, K., Kan, Q.H., Yu, C.: Molecular dynamics simulations on nanocrystalline super-elastic NiTi shape memory alloy by addressing transforamtion ratchetting and its atomic mechanism. Int. J. Plast. 125, 374–394 (2020)

    Article  Google Scholar 

  15. Kundu, A., Field, D.P., Chandra Chakraborti, P.: Influence of strain amplitude on the development of dislocation structure during cyclic plastic deformation of 304 ln austenitic stainless steel. Mater. Sci. Eng. A Struct. 762, 138090 (2019)

    Article  Google Scholar 

  16. Sauzay, M., Kubin, L.P.: Scaling laws for dislocation microstructures in monotonic and cyclic deformation of fcc metals. Prog. Mater Sci. 56, 725–784 (2011)

    Article  Google Scholar 

  17. Pham, M.S., Solenthaler, C., Janssens, K.G.F., Holdsworth, S.R.: Dislocation structure evolution and its effects on cyclic deformation response of aisi 316l stainless steel. Mater. Sci. Eng. A Struct. 528, 3261–3269 (2011)

    Article  Google Scholar 

  18. Roa, J.J., Fargas, G., Jiménez-Piqué, E., Mateo, A.: Deformation mechanisms induced under high cycle fatigue tests in a metastable austenitic stainless steel. Mater. Sci. Eng. A Struct. 597, 232–236 (2014)

    Article  Google Scholar 

  19. Wang, H., Jing, H.Y., Zhao, L., Han, Y.D., Lv, X.Q., Xu, L.Y.: Dislocation structure evolution in 304l stainless steel and weld joint during cyclic plastic deformation. Mater. Sci. Eng. A Struct. 690, 16–31 (2017)

    Article  Google Scholar 

  20. Liu, X., Sun, W.K., Liew, K.M.: Multiscale modeling of crystal plastic deformation of polycrystalline titanium at high temperatures. Comput. Method Appl. Mech. Eng. 340, 932–955 (2018)

    Article  MathSciNet  Google Scholar 

  21. Carneiro, L., Wang, X.G., Jiang, Y.Y.: Cyclic deformation and fatigue behavior of 316l stainless steel processed by surface mechanical rolling treatment. Int. J. Fatigue 134, 105469 (2020)

    Article  Google Scholar 

  22. Bocher, L., Delobelle, P., Robinet, P., Feaugas, X.: Mechanical and microstructural investigations of an austenitic stainless steel under non-proportional loadings in tension-torsion-internal and external pressure. Int. J. Plast. 17, 1491–1530 (2001)

    Article  Google Scholar 

  23. Feaugas, X., Gaudin, C.: Ratchetting process in the stainless steel aisi 316l at 300 k: an experimental investigation. Int. J. Plast. 20, 643–662 (2004)

    Article  Google Scholar 

  24. Gaudin, C., Feaugas, X.: Cyclic creep process in aisi 316l stainless steel in terms of dislocation patterns and internal stresses. Acta Mater. 52, 3097–3110 (2004)

    Article  Google Scholar 

  25. Taleb, L., Hauet, A.: Multiscale experimental investigations about the cyclic behavior of the 304l ss. Int. J. Plast. 25, 1359–1385 (2009)

    Article  Google Scholar 

  26. Kang, G.Z., Dong, Y.W., Wang, H., Liu, Y.J., Cheng, X.J.: Dislocation evolution in 316l stainless steel subjected to uniaxial ratchetting deformation. Mater. Sci. Eng. A Struct. 527, 5952–5961 (2010)

    Article  Google Scholar 

  27. Dong, Y.W., Kang, G.Z., Liu, Y.J., Wang, H., Cheng, X.J.: Dislocation evolution in 316l stainless steel during multiaxial ratchetting deformation. Mater. Charact. 65, 62–72 (2012)

    Article  Google Scholar 

  28. Dong, Y.W., Kang, G.Z., Liu, Y.J., Jiang, H.: Multiaxial ratcheting of 20 carbon steel: macroscopic experiments and microscopic observations. Mater. Charact. 83, 1–12 (2013)

    Article  Google Scholar 

  29. Kang, G.Z., Dong, Y.W., Liu, Y.J., Wang, H., Cheng, X.J.: Uniaxial ratchetting of 20 carbon steel: macroscopic and microscopic experimental observations. Mater. Sci. Eng. A Struct. 528, 5610–5620 (2011)

    Article  Google Scholar 

  30. Kang, G.Z., Dong, Y.W., Liu, Y.J., Jiang, H.: Macroscopic and microscopic investigations on uniaxial ratchetting of two-phase Ti-6Al-4V alloy. Mater. Charact. 92, 26–35 (2014)

    Article  Google Scholar 

  31. Hamidinejad, S.M., Varvani-Farahani, A.: Ratcheting of 304 stainless steel under multiaxial step-loading conditions. Int. J. Mech. Sci. 100, 80–89 (2015)

    Article  Google Scholar 

  32. Taleb, L., Keller, C.: Experimental contribution for better understanding of ratchetting in 304L SS. Int. J. Mech. Sci. 146–167, 527–535 (2018)

    Article  Google Scholar 

  33. Sarkar, A., De, P.S., Mahato, J.K., Kundu, A., Chakraborti, P.C.: Effect of mean stress and solution annealing temperature on ratcheting behaviour of aisi 304 stainless steel. Procedia Eng. 74, 376–383 (2014)

    Article  Google Scholar 

  34. Xu, B.B., Xu, W., Guo, F.L.: Creep behavior due to interface diffusion in unidirectional fiber-reinforced metal matrix composites under general loading conditions: A micromechanics analysis. Acta Mech. (2019). https://doi.org/10.1007/s00707-019-02592-8

    Article  Google Scholar 

  35. Pontini, A.E., Hermida, J.D.: X-ray diffraction measurement of the stacking fault energy reduction induced by hydrogen in an aisi 304 steel. Scr. Mater. 37, 1831–1837 (1997)

    Article  Google Scholar 

  36. Cheng, X.J., Wang, H., Kang, G.Z., Dong, Y.W., Liu, Y.J.: Study on strain-induced martensite transformation of 304 stainless steel during ratcheting deformationtion. Acta. Metall. Sin. 45, 830–834 (2009)

    Google Scholar 

  37. Jackson, P.J.: The role of cross-slip in the plastic deformation of crystals. Mater. Sci. Eng. 57, 39–47 (1983)

    Article  Google Scholar 

  38. Püschl, W.: Models for dislocation cross-slip in close-packed crystal structures: a critical review. Prog. Mater. Sci. 47, 415–461 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to gratefully acknowledge the financial supports by the National Science Foundation of China (grant no. 11502115), the Natural Science Foundation of Jiangsu Province (grant nos. BK20150777 and BK20190437), as well as the Fundamental Research Funds for the Central Universities (grant no. 30920021147)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yawei Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Zhang, Z. & He, X. Microscopic substructures of stainless steel 304 undergoing a uniaxial ratcheting deformation. Acta Mech 231, 4919–4931 (2020). https://doi.org/10.1007/s00707-020-02804-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02804-6

Navigation