Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) September 4, 2020

New mixed-valent alkali chain sulfido ferrates A1+x[FeS2] (A = K, Rb, Cs; x = 0.333–0.787)

  • Michael Schwarz , Pirmin Stüble , Katharina Köhler and Caroline Röhr EMAIL logo

Abstract

Four new mixed-valent chain alkali metal (A) sulfido ferrates of the general structure family A1+xFexIIFe1xIIIS2 were synthesized in the form of tiny green-metallic needles from nearly stoichiometric melts reacting elemental potassium with natural pyrite (A = K) or previously prepared Rb2S/Cs2S2 with elemental iron and sulfur (A = Rb/Cs). The crystal structures of the compounds were determined by means of single crystal X-ray diffraction: In the (3+1)D modulated structure of K7.15[FeS2]4 (space group Ccce(00σ3)0s0, a = 1363.87(5), b = 2487.23(13), c = 583.47(3) pm, q = 0,0,0.444, R1 = 0.055/0.148, x = 0.787), a position modulation of the two crystallographically different undulated [FeS4/2]1 tetrahedra chains and the surrounding K cations is associated with an occupation modulation of one of the three potassium sites. In the case of the new monoclinic rubidium ferrate Rb4[FeS2]3 (x = 13; space group P21/c, a = 1640.49(12), b = 1191.94(9), c = 743.33(6) pm, β = 94.759(4)°, Z = 4, R1 = 0.1184) the undulation of the tetrahedra chain is commensurate, the repetition unit consists of six tetrahedra. In the second new Rb ferrate, Rb7[FeS2]5 (x = 0.4; monoclinic, space group C2/c, K7[FeS2]5-type; a = 2833.9(2), b = 1197.36(9), c = 744.63(6) pm, β = 103.233(4)°, Z = 4, R1 = 0.1474) and its isotypic mixed Rb/Cs-analog Rb3.6Cs3.4[FeS2]5 (a = 2843.57(5), b = 1226.47(2), c = 759.890(10) pm, β = 103.7170(9)°, R1 = 0.0376) the chain buckling leads to a further increased repetition unit of 10 tetrahedra. For all mixed-valent ferrates, the Fe–S bond lengths continuously increase with the amount (x) of Fe(II). The buckling of the chains is controlled through the local coordination of the S atoms by the variable number of A cations of different sizes.


Dedicated to Professor Dr. Ulrich Müller on the occasion of his 80th birthday.



Corresponding author: Caroline Röhr, Institut für Anorganische und Analytische Chemie, Universität Freiburg, Albertstrasse 21, D-79104Freiburg, Germany, E-mail:

Acknowledgments

We would like to thank the Deutsche Forschungsgemeinschaft for financial support and Miriam Haas for contributing in the preparative work.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Deutsche Forschungsgemeinschaft

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Preis, K. KFeS2. J. Prakt. Chem. 1869, 107, 12; https://doi.org/10.1002/prac.18691070104.Search in Google Scholar

2. Schneider, R. KFeS2. J. Prakt. Chem. 1869, 108, 16; https://doi.org/10.1002/prac.18691080102.Search in Google Scholar

3. Boller, H., Blaha, H. Zur Kenntnis des Natriumthioferrates(III). Monatsh. Chem. 1983, 114, 145; https://doi.org/10.1007/bf00798319.Search in Google Scholar

4. Bronger, W. Darstellung, Kristallstruktur und magnetische Eigenschaften von Alkalithioferraten(III). Z. Anorg. Allg. Chem. 1968, 359, 225; https://doi.org/10.1002/zaac.19683590502.Search in Google Scholar

5. Pant, A. K., Stevens, E. D. Experimental electron-density-distribution study of potassium iron disulfide, a low-dimensional material. Phys. Rev. B 1988, 37, 1109; https://doi.org/10.1103/physrevb.37.1109.Search in Google Scholar

6. Bronger, W., Kyas, A., Müller, P. The antiferromagnetic structures of KFeS2, RbFeS2, KFeSe2 and RbFeSe2 and the correlation between magnetic moments and crystal field calculations. J. Solid State Chem. 1987, 70, 262; https://doi.org/10.1016/0022-4596(87)90065-x.Search in Google Scholar

7. Seidov, Z., von Nidda, H.-A. K., Tsurkan, V., Filippova, I. G., Günther, A., Gavrilova, T. P., Vagizov, F. G., Kiiamov, A. G., Tagirov, L. R., Loidl, A. Magnetic properties of the covalent chain antiferromagnet RbFeSe2. Phys. Rev. B 2016, 94, 134414; https://doi.org/10.1103/physrevb.94.134414.Search in Google Scholar

8. Smyk, A. A., Sablina, K. A., Kokov, I. T. Polymorphic transition in RbFeS2. Kristallografiya 1989, 34, 757.Search in Google Scholar

9. Schwarz, M., Haas, M., Röhr, C. Die neuen Alkalimetall-Sulfidoferrate K9[FeIIIS4](S2)S, (K/Rb)6[Fe2IIIS6], Rb8 [Fe4IIIS10] und K7 [FeII/IIIS2]5. Z. Anorg. Allg. Chem. 2013, 639, 360; https://doi.org/10.1002/zaac.201200397.Search in Google Scholar

10. Nishiyama, N., Lin, J., Okazaki, A., Iwasaka, M., Hirakawa, K. Vegardś law in KFe(S1−xSex)2. Some structural and magnetic properties. Jpn. J. Appl. Phys. 1990, 29, 369; https://doi.org/10.1143/jjap.29.369.Search in Google Scholar

11. Stüble, P., Röhr, C. Cs[FeSe2], Cs3[FeSe2]2, and Cs7[Fe4Se8]: missing links of known chalcogenido ferrate series. Z. Anorg. Allg. Chem. 2017, 643, 1462; https://doi.org/10.1002/zaac.201700263.Search in Google Scholar

12. Ito, Y., Nishi, M., Majkrazak, C. F., Passell, L. Low temperature powder neutron diffraction studies of CsFeS2. J. Phys. Soc. Jpn. 1985, 54, 348; https://doi.org/10.1143/jpsj.54.348.Search in Google Scholar

13. Nishi, M., Ito, Y. Magnetic structure of KFeS2 – a linear chain antiferromagnet and a spin analog of active sites of two iron ferredoxins – by neutron diffraction. Solid State Commun. 1979, 30, 571; https://doi.org/10.1016/0038-1098(79)91138-4.Search in Google Scholar

14. Nishi, M., Ito, Y., Ito, A. Observation of magnetic and structural phase transition in CsFeS2. J. Phys. Soc. Jpn. 1983, 52, 3602; https://doi.org/10.1143/jpsj.52.3602.Search in Google Scholar

15. Stüble, P., Peschke, S., Johrendt, D., Röhr, C. Na7[Fe2S6], Na2[FeS2] and Na2[FeSe2]: new sodium chalcogenido ferrates. J. Solid State Chem. 2018, 258, 416; https://doi.org/10.1016/j.jssc.2017.10.033.Search in Google Scholar

16. Klepp, K., Boller, H. Na3Fe2S4, ein Thioferrat mit gemischtvalenter 1[FeS2]-Kette. Monatsh. Chem. 1981, 112, 83; https://doi.org/10.1007/bf00906245.Search in Google Scholar

17. Bronger, W., Ruschewitz, U., Müller, P. New ternary iron sulphides A3Fe2S4 (A = K, Rb, Cs): syntheses and crystal structures. J. Alloys Compd. 1995, 218, 22; https://doi.org/10.1016/0925-8388(94)01344-6.Search in Google Scholar

18. Klepp, K., Sparlinek, W. Crystal structure of trisodiumtetraselenodiferrate Na3Fe2Se4. Z. Kristallogr. NCS 1996, 211, 626; https://doi.org/10.1524/zkri.1996.211.9.626.Search in Google Scholar

19. Klepp, K. O., Pantschov, S., Boller, H. Crystal structure of mixed-valent trirubidium tetraselenideoferrate Rb3Fe2Se4. Z. Kristallogr. NCS 2000, 215, 5; https://doi.org/10.1515/ncrs-2000-0105.Search in Google Scholar

20. Bronger, W., Genin, H. S., Müller, P. K3FeSe3 und K3Fe2Se4, zwei neue Verbindungen im System K/Fe/Se. Z. Anorg. Allg. Chem. 1999, 625, 274; https://doi.org/10.1002/(sici)1521-3749(199902)625:2<274::aid-zaac274>3.0.co;2-2.10.1002/(SICI)1521-3749(199902)625:2<274::AID-ZAAC274>3.0.CO;2-2Search in Google Scholar

21. Schwarz, M., Röhr, C. Cs8[Fe4S10] and Cs7[Fe4S8]: two new sulfido ferrates with different tetrameric anions. Inorg. Chem. 2015, 54, 1038; https://doi.org/10.1021/ic502382v.Search in Google Scholar

22. Bronger, W., Müller, P. Structure and magnetic properties of alkalichalogenoferrates. Acta Crystallogr. 1981, 37A, C196; https://doi.org/10.1107/s0108767381093707.Search in Google Scholar

23. Brauer, G. Handbuch der präparativen anorganischen Chemie; Enke Verlag: Stuttgart, 1981.Search in Google Scholar

24. Yvon, K., Jeitschko, W., Parthé, E. program Lazy-Pulverix; University Geneve: Switzerland, 1976.Search in Google Scholar

25. Bronger, W., Ruschewitz, U. New ternary iron chalcogenides A9Fe2X7 (A=K, Rb, Cs; X=S, Se): synthesis, crystal structure and magnetic properties. J. Alloys Compd. 1993, 197, 83; https://doi.org/10.1016/0925-8388(93)90622-t.Search in Google Scholar

26. Schwarz, M., Stüble, P., Röhr, C. Rubidium chalcogenido diferrates containing dimers [Fe2Q6] of edge-sharing tetrahedra (Q = O, S, Se). Z. Naturforsch. 2017, 72b, 529; https://doi.org/10.1515/znb-2017-0076.Search in Google Scholar

27. STOE & Cie GmbH. X-Shape (version 1.03); Crystal Optimization for Numerical Absorption Correction, Darmstadt, Germany, 2005.Search in Google Scholar

28. Sheldrick, G. M. SADABS: Program for Absorption Correction for Data from Area Detector Frames; Bruker Analytical X-ray Systems, Inc.: Madison, Wisconsin, USA, 2008.Search in Google Scholar

29. Sheldrick, G. M. Twinabs; University of Göttingen: Germany, 2017.Search in Google Scholar

30. Sheldrick, G. M. A short history of Shelx. Acta Crystallogr. 2008, A64, 112; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

31. Petříček, V., Dušek, M., Palatinus, L. Crystallograhic computing system Jana2006: general features. Z. Kristallogr. 2007, 229, 345.10.1515/zkri-2014-1737Search in Google Scholar

32. Palatinus, L., Chapuis, G. Jana2006. The crystallographic computing system 2006. J. Appl. Crystallogr. 2007, 40, 451; https://doi.org/10.1107/s0021889807007637.Search in Google Scholar

33. Petříček, V., Eigner, V., Dušek, M., Čejchan, A. Discontinuous modulation functions and their application for analysis of modulated structure with the computing system Jana2006. Z. Kristallogr. 2016, 231, 301.10.1515/zkri-2015-1913Search in Google Scholar

34. CCDC 1985507 (Rb4[FeS2]3), 1985508 (Rb7[FeS2]5), 1985509 (Rb3.6Cs3.4[FeS2]5) and 1985601 (K7.15[FeS2]4) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via. www.ccdc.cam.ac.uk/data_request/cif.Search in Google Scholar

35. Gelato, L. M., Parthé, E. Structure Tidy: a computer program to standardize structure data. J. Appl. Crystallogr. 1990, A46, 467.10.1107/S0021889887086965Search in Google Scholar

36. Finger, L. W., Kroeker, M., Toby, B. H. Drawxtl: an open-source computer program to produce crystal structure drawings. J. Appl. Crystallogr. 2007, 40, 188; https://doi.org/10.1107/s0021889806051557.Search in Google Scholar

37. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976, A32, 751; https://doi.org/10.1107/s0567739476001551.Search in Google Scholar

38. Hoppe, R. Effective Coordination numbers (ECoN) and mean fictive ionic radii (MEFIR). Z. Kristallogr. 1979, 150, 23; https://doi.org/10.1524/zkri.1979.150.1-4.23.Search in Google Scholar

39. Ensling, J., Gütlich, P., Spiering, H., Klepp, K. Mössbauer and magnetic studies of mixed-valence chain compounds: Na3Fe2S4 and Na3Fe2Se4. Hyperfine Interact. 1986, 28, 599; https://doi.org/10.1007/bf02061519.Search in Google Scholar

40. Jones, C. H. W., Kovacs, P. E., Sharma, R. D., McMillan, R. S. An 75Fe Mössbauer study of the intermediates formed by the reduction of FeS2 in the Li/FeS2 battery system. J. Phys. Chem. 1991, 95, 774; https://doi.org/10.1021/j100155a053.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2020-0023).


Received: 2020-02-29
Accepted: 2020-04-03
Published Online: 2020-09-04
Published in Print: 2020-09-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2020-0023/html
Scroll to top button