Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Note
  • Published:

Structure and properties of thermoresponsive gels formed by RAFT polymerization: effect of the RAFT agent content

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Niiyama E, Uto K, Lee CM, Sakura K, Ebara M. Alternating magnetic field-triggered switchable nanofiber mesh for cancer thermo-chemotherapy. Polymers. 2018;10:1018.

    Article  Google Scholar 

  2. Masuda T, Ueki T, Tamate R, Matsukawa K, Yoshida R. Chemomechanical motion of a self-oscillating gel in a protic ionic liquid. Angew Chem Int Ed. 2018;57:16693–7.

    Article  CAS  Google Scholar 

  3. Sakai T, Matsunaga T, Yamamoto Y, Ito C, Yoshida R, Suzuki S, et al. Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules. 2008;41:5379–84.

    Article  CAS  Google Scholar 

  4. Chen Y, Tan Z, Wang W, Peng Y, Narain R. Injectable, self-healing, and multi-responsive hydrogels via dynamic covalent bond formation between benzoxaborole and hydroxyl groups. Biomacromolecules. 2019;20:1028–35.

    Article  CAS  Google Scholar 

  5. Tamate R, Hashimoto K, Horii T, Hirasawa M, Li X, Shibayama M, et al. Self-healing micellar ion gels based on multiple hydrogen bonding. Adv Mater. 2018;30:1802792.

    Article  Google Scholar 

  6. Li X, Nakagawa S, Tsuji Y, Watanabe N, Shibayama M. Polymer gel with a flexible and highly ordered three-dimentional network synthesized via bond parcolation. Sci Adv. 2019;5:eaax8647.

    Article  CAS  Google Scholar 

  7. Masuda T, Tsuji T, Koizumi H, Takai M. Strong cationic radical initiator-based design of a thermoresponsive hydrogel showing drastic volume transition. Macromol Chem Phys. 2020;221:1900507.

    Article  CAS  Google Scholar 

  8. Zheng WJ, An N, Yang JH, Zhou J, Chen YM. Tough Al-alginate/Poly(N-isopropylacrylamide) hydrogel with tunable LCST for soft robotics. ACS Appl Mater Interfaces. 2015;7:1758–64.

    Article  CAS  Google Scholar 

  9. Matsukawa K, Masuda T, Akimoto AM, Yoshida R. A surface-grafted thermoresponsive hydrogel in which the surface structure dominates the bulk properties. Chem Commun. 2016;52:11064–7.

    Article  CAS  Google Scholar 

  10. Dusek K, Duskova-Smrckova M. Network structure formation during crosslinking of organic coating systems. Prog Polym Sci. 2000;25:1215–60.

    Article  CAS  Google Scholar 

  11. Yoon JA, Gayathri C, Gil RR, Kowalewski T, Matyjaszewski K. Comparison of thermoresponsive deswelling kinetics of poly(2-(2-mthoxyethoxy)ethyl methacrylate hydrogels prepared by ATRP and FRP. Macronolecules. 2010;43:4791–7.

    Article  CAS  Google Scholar 

  12. Norioka C, Kawamura A, Miyata T. Mechanical and responsive properties of temperature-responsive gels prepared via atom transfer radical polymerization. Polym Chem. 2017;8:6050–7.

    Article  CAS  Google Scholar 

  13. Cavalli F, Pfeifer C, Arens L, Barner L, Wilhelm M. Analysis of the local mobility of RAFT mediated poly(acrylic acid) networks via low field 1H-NMR techniques for investigation of the network topology. Macromol Chem Phys. 2020;221:1900387.

    Article  CAS  Google Scholar 

  14. Henkel R, Vana P. The Influence of RAFT on the Microstructure and Mechanical Properties of Photopolymerized Poly(butyl acrylate) Networks. Macromol Chem Phys. 2014;215:182–9.

    Article  CAS  Google Scholar 

  15. Liu Q, Zhang P, Qing A, Lan Y, Lu M. Poly(N-isopropylacrylamide) hydrogels with improved shrinking kinetics by RAFT polymerization. Polymer. 2006;47:2330–6.

    Article  CAS  Google Scholar 

  16. Ida S, Furukawa S, Tanimoto S, Hirokawa Y. Growing crosslinker: gel synthesis using novel divinyl crosslinker with expanding chain-length between vinyl groups by RAFT polymerization. Koubunshi Ronbunshu. 2015;72:440–6.

    Article  CAS  Google Scholar 

  17. Sakota K, Tabata D, Sekiya H. Macronolecular crowding modifies the impact of specific hofmeister ions on the coil-globule transition of PNIPAM. J Phys Chem B. 2015;119:10334–40.

    Article  CAS  Google Scholar 

  18. Hirotsu S. Softening of bulk modulus and negative Poisson’s ratio near the volume phase transition of polymer gels. J Chem Phys. 1991;94:3949–57.

    Article  CAS  Google Scholar 

  19. Shibayama M, Nagai K. Shrinking kinetics of poly(N-isopropylacrylamide) gels T-jumped across their volume phase transition temperatures. Macromolecules. 1999;32:7461–8.

    Article  CAS  Google Scholar 

  20. Yoshida R, Uchida K, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, et al. Comb-type grafted hydrogels with rapid de-swelling response to temperature changes. Nature. 1995;374:240–2.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan to TM. We are grateful to Prof. Ryo Yoshida, Prof. Aya M. Akimoto, and Dr. Takafumi Enomoto (The University of Tokyo) for the use of the GPC system.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tsukuru Masuda or Madoka Takai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masuda, T., Takai, M. Structure and properties of thermoresponsive gels formed by RAFT polymerization: effect of the RAFT agent content. Polym J 52, 1407–1412 (2020). https://doi.org/10.1038/s41428-020-00401-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-00401-x

Search

Quick links