Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Kruppel-like factor 10 protects against acute viral myocarditis by negatively regulating cardiac MCP-1 expression

Abstract

Viral myocarditis (VMC) is a cardiac disease associated with myocardial inflammation and injury induced by virus infection. Cardiomyocytes have recently been regarded as key players in eliciting and modulating inflammation within the myocardium. Kruppel-like factor 10 (KLF10) is a crucial regulator of various pathological processes and plays different roles in a variety of diseases. However, its role in VMC induced by coxsackievirus B3 (CVB3) infection remains unknown. In this study, we report that cardiac KLF10 confers enhanced protection against viral myocarditis. We found that KLF10 expression was downregulated upon CVB3 infection. KLF10 deficiency enhanced cardiac viral replication and aggravated VMC progress. Bone marrow chimera experiments indicated that KLF10 expression in nonhematopoietic cells was involved in the pathogenesis of VMC. We further identified MCP-1 as a novel target of KLF10 in cardiomyocytes, and KLF10 cooperated with histone deacetylase 1 (HDAC1) to negatively regulate MCP-1 expression by binding its promoter, leading to activation of MCP-1 transcription and recruitment of Ly6Chigh monocytes/macrophages into the myocardium. This novel mechanism of MCP-1 regulation by KLF10 might provide new insights into the pathogenesis of VMC and a potential therapeutic target for VMC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu, P. P. & Mason, J. W. Advances in the understanding of myocarditis. Circulation 104, 1076–1082 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Pollack, A., Kontorovich, A. R., Fuster, V. & Dec, G. W. Viral myocarditis-diagnosis, treatment options, and current controversies. Nat. Rev. Cardiol. 12, 670–680 (2015).

    Article  PubMed  Google Scholar 

  3. Schultz, J. C., Hilliard, A. A., Cooper, L. T. Jr. & Rihal, C. S. Diagnosis and treatment of viral myocarditis. Mayo Clin. Proc. 84, 1001–1009 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bacmeister, L. et al. Inflammation and fibrosis in murine models of heart failure. Basic Res. Cardiol. 114, 19 (2019).

    Article  PubMed  Google Scholar 

  5. Tam, P. E. Coxsackievirus myocarditis: interplay between virus and host in the pathogenesis of heart disease. Viral Immunol. 19, 133–146 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Yajima, T. & Knowlton, K. U. Viral myocarditis: from the perspective of the virus. Circulation 119, 2615–2624 (2009).

    Article  PubMed  Google Scholar 

  7. Esfandiarei, M. & McManus, B. M. Molecular biology and pathogenesis of viral myocarditis. Annu Rev. Pathol. 3, 127–155 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Ghigo, A., Franco, I., Morello, F. & Hirsch, E. Myocyte signalling in leucocyte recruitment to the heart. Cardiovasc, Res. 102, 270–280 (2014).

    Article  CAS  Google Scholar 

  9. Wrigley, B. J., Lip, G. Y. & Shantsila, E. The role of monocytes and inflammation in the pathophysiology of heart failure. Eur. J. Heart Fail 13, 1161–1171 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Aoyagi, T. & Matsui, T. The cardiomyocyte as a source of cytokines in cardiac injury. J.Cell Sci. Ther. 2012, 003 (2011).

  11. Kai, H., Kuwahara, F., Tokuda, K. & Imaizumi, T. Diastolic dysfunction in hypertensive hearts: roles of perivascular inflammation and reactive myocardial fibrosis. Hypertens. Res. 28, 483–490 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. McCarthy, C. G. et al. Toll-like receptors and damage-associated molecular patterns: novel links between inflammation and hypertension. Am. J. Physiol. Heart Circ. Physiol. 306, H184–H196 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Shen, Y. et al. Coxsackievirus group B type 3 infection upregulates expression of monocyte chemoattractant protein 1 in cardiac myocytes, which leads to enhanced migration of mononuclear cells in viral myocarditis. J. Virol. 78, 12548–12556 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Niu, J. & Kolattukudy, P. E. Role of MCP-1 in cardiovascular disease: molecular mechanisms and clinical implications. Clin. Sci. 117, 95–109 (2009).

    Article  CAS  Google Scholar 

  15. Leuschner, F. et al. Silencing of CCR2 in myocarditis. Eur. Heart J. 36, 1478–1488 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Yue, Y., Gui, J., Xu, W. & Xiong, S. Gene therapy with CCL2 (MCP-1) mutant protects CVB3-induced myocarditis by compromising Th1 polarization. Mol. Immunol. 48, 706–713 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Black, A. R., Black, J. D. & Azizkhan-Clifford, J. Sp1 and kruppel-like factor family of transcription factors in cell growth regulation and cancer. J. Cell Physiol. 188, 143–160 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Cao, Z., Sun, X., Icli, B., Wara, A. K. & Feinberg, M. W. Role of Kruppel-like factors in leukocyte development, function, and disease. Blood 116, 4404–4414 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Feinberg, M. W. et al. The Kruppel-like factor KLF4 is a critical regulator of monocyte differentiation. EMBO J. 26, 4138–4148 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Subramaniam, M. et al. TIEG1 null mouse-derived osteoblasts are defective in mineralization and in support of osteoclast differentiation in vitro. Mol. Cell Biol. 25, 1191–1199 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Subramaniam, M. et al. Identification of a novel TGF-beta-regulated gene encoding a putative zinc finger protein in human osteoblasts. Nucleic Acids Res. 23, 4907–4912 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, W. et al. Klf10 inhibits IL-12p40 production in macrophage colony-stimulating factor-induced mouse bone marrow-derived macrophages. Eur. J. Immunol. 43, 258–269 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Rajamannan, N. M. et al. TGFbeta inducible early gene-1 (TIEG1) and cardiac hypertrophy: Discovery and characterization of a novel signaling pathway. J. Cell Biochem. 100, 315–325 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cen, M. et al. TIEG1 deficiency confers enhanced myocardial protection in the infarcted heart by mediating the Pten/Akt signalling pathway. Int J. Mol. Med. 39, 569–578 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, M. et al. MCPIP1 inhibits coxsackievirus B3 replication by targeting viral RNA and negatively regulates virus-induced inflammation. Med. Microbiol. Immunol. 207, 27–38 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, Y. et al. Kruppel-like factor 10 (KLF10) is transactivated by the transcription factor C/EBPbeta and involved in early 3T3-L1 preadipocyte differentiation. J. Biol. Chem. 293, 14012–14021 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Elsharkawy, A. M. et al. The NF-kappaB p50:p50:HDAC-1 repressor complex orchestrates transcriptional inhibition of multiple pro-inflammatory genes. J. Hepatol. 53, 519–527 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Subramaniam, M., Hawse, J. R., Rajamannan, N. M., Ingle, J. N. & Spelsberg, T. C. Functional role of KLF10 in multiple disease processes. Biofactors 36, 8–18 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Esfandiarei, M. et al. Coxsackievirus B3 activates nuclear factor kappa B transcription factor via a phosphatidylinositol-3 kinase/protein kinase B-dependent pathway to improve host cell viability. Cell Microbiol. 9, 2358–2371 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Garmaroudi, F. S. et al. Coxsackievirus B3 replication and pathogenesis. Future Microbiol. 10, 629–653 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Wu, L. et al. Cardiac fibroblasts mediate IL-17A-driven inflammatory dilated cardiomyopathy. J. Exp. Med. 211, 1449–1464 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chinese National Natural Science Foundation (31400769, 31870903, 31870868, and 31670930), Jiangsu Province Natural Science Foundation (BK20140371) and Jiangsu Postdoctoral Science Foundation (1402176C), Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

M.L. designed the study, analyzed the data and wrote the manuscript. J.Y., H.K.Z., X.L.W., Y.H.S. and Y.L. performed the experiments. J.G., L.W. and Y.X.Z. revised the paper. W.X., L.W., M.S., and T.C.S. supervised the study and reviewed the paper. All authors read and approved the final version of the paper.

Corresponding authors

Correspondence to Lie Wang, Wei Xu or Min Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Zhang, H., Wang, X. et al. Kruppel-like factor 10 protects against acute viral myocarditis by negatively regulating cardiac MCP-1 expression. Cell Mol Immunol 18, 2236–2248 (2021). https://doi.org/10.1038/s41423-020-00539-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-020-00539-x

Key words

This article is cited by

Search

Quick links