Skip to main content
Log in

HPTLC method for the simultaneous determination of six bioactive terpenoids in Putranjiva roxburghii Wall.

  • Original Research Paper
  • Published:
JPC – Journal of Planar Chromatography – Modern TLC Aims and scope Submit manuscript

Abstract

High-throughput and sensitive determination of triterpenoids is challenging by high-performance liquid chromatographic methods due to their non-chromophoric nature, lipophilic properties, and sequential run. The present study demonstrates the development of a validated high-performance thin-layer chromatography (HPTLC) method for the simultaneous determination of bioactive terpenoids in the bark of Putranjiva roxburghii with uncertainty measurement to fulfill the technical requirement of ISO 17025:2017. Optimum separation of friedelin (1), methylputranjate (2), putrone (3), roxburghonic acid (4), putranjivadione (5), and roxburghonol (6) was achieved on silica gel 60 F254 plates using n-hexane–ethyl acetate (90:10, v/v). The sensitive estimation of targeted terpenoids was achieved by screening 15 different post-chromatographic derivatization reagents. The method was validated as per the ICH guidelines. Additionally, an uncertainty measurement for reliable and accurate determination was established following EURACHEM/CITAC guide CG-4 statistical procedure. The expanded uncertainty of terpenoids (16) measurement in P. roxburghii bark was in the range of 0.44–2.17%, which confirmed that at a confidence level of 95%, the unknown true value was within ± 5% range of the measured value. The compound methylputranjate showed the minimum uncertainty (0.4424), while putranjivadione showed the maximum uncertainty (2.1722). This is the first validated HPTLC method with new derivatization reagent providing the simultaneous, sensitive, and high-throughput analysis of six bioactive triterpenes in the bark of P. roxburghii with defined traceability and accuracy profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

CITAC:

Cooperation on International Traceability in Analytical Chemistry

HPTLC:

High-performance thin-layer chromatography

ICH:

International Conference on Harmonization

MAE:

Microwave-assisted extraction

PDA:

Photodiode array

RP-HPLC:

Reversed-phase high-performance liquid chromatography

LOD:

Limit of detection

LOQ:

Limit of quantification

References

  1. Dzubak P, Hajduch M, Vydra D, Hustova A, Kvasnica M, Biedermann D, Markova L, Urban M, Sarek J (2006) Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat Prod Rep 23(3):394–411. https://doi.org/10.1039/b515312n

    Article  CAS  Google Scholar 

  2. Cheng AX, Lou YG, Mao YB, Lu S, Wang LJ, Chen XY (2007) Plant terpenoids: biosynthesis and ecological functions. J Integr Plant Biol 49(2):179–186. https://doi.org/10.1111/j.1744-7909.2007.00395.x

    Article  CAS  Google Scholar 

  3. Liu J (1995) Pharmacology of oleanolic acid and ursolic acid. J Ethnopharmacol 49(2):57–68. https://doi.org/10.1016/0378-8741(95)90032-2

    Article  CAS  Google Scholar 

  4. Wansi JD, Wandji J, Sewald N, Nahar L, Martin C, Sarker SD (2016) Phytochemistry and pharmacology of the genus Drypetes: a review. J Ethnopharmacol 190:328–353. https://doi.org/10.1016/j.jep.2016.06.060

    Article  CAS  Google Scholar 

  5. Phuphathanaphong L (2006) Flora of Thailand Euphorbiaceae. Natl Herb Nederland 336:1877–1887

    Google Scholar 

  6. Khare CP (2004) Indian herbal remedies: rational western therapy, Ayurvedic, and other traditional usage, botany. Springer-Verlag, Berlin Heidelberg. https://doi.org/10.1007/978-3-642-18659-2

    Book  Google Scholar 

  7. Ravishankara M, Pillai A, Padh H, Rajani M (2003) A sensitive HPTLC method for estimation of amentoflavone, a bioactive principle from Biophytum sensitivum (Linn.) DC. and Putranjiva roxburghii Wall. J Planar Chromatogr 16(3):201–205. https://doi.org/10.1556/JPC.16.2003.3.6

    Article  CAS  Google Scholar 

  8. Kedar KA, Chaudhari SR, Rao AS (2017) A validated HPTLC method for the quantification of β-sitosterol In leaves, bark of Putranjiva roxburghii Wall. Int J Sci Res Sci Technol 3(10):73–78. https://doi.org/10.32628/IJSRST1731017

    Article  Google Scholar 

  9. Kedar KA, Ravindra CS, Rao SA (2017) A validated HPTLC method for the quantification of friedelin in Putranjiva roxburghii Wall extracts and in polyherbal formulations. Bull Fac Pharm Cairo Univ 55(1):79–84. https://doi.org/10.1016/j.bfopcu.2016.11.002

    Article  Google Scholar 

  10. Badole M, Vidya D, Gaauree C (2011) Simultaneous quantification of β-amyrin and stigmasterol in Putranjiva roxburghii wall. by high-performance thin-layer chromatography. Int Pharma Bio Sci 2(4):346–352

    CAS  Google Scholar 

  11. Mishra S, Kumar S, Darokar PM, Shanker K (2019) Novel bioactive compound from the bark of Putranjiva roxburghii Wall. Nat Prod Res 1–3. https://doi.org/10.1080/14786419.2019.1633650

  12. Anonymous (2005) ICH harmonised tripartite guideline. Validation of analytical procedures: text and methodology (Q2R1), Step 4 Version. International Conference on Harmonization (ICH), Food and Drug administration, USA

  13. AOAC (2012) AOAC international guidelines for validation of botanical identification methods. J AOAC Int 95(1):268–272. https://doi.org/10.5740/jaoacint.11-447

    Article  CAS  Google Scholar 

  14. González AG, Herrador MA (2007) The assessment of electronic balances for accuracy of mass measurements in the analytical laboratory. Accred Qual Assur 12(1):21–29

    Article  Google Scholar 

  15. Srivastava M, Singh M, Maurya P, Srivastava N, Gupta N, Shanker K (2019) Simultaneous quantification of five bioactive phenylethanoid, iridoid, and flavonol glycosides in Duranta erecta L.: ultra performance liquid chromatography method validation and uncertainty measurement. J Pharmaceu Biomed Anal 174:711–717. https://doi.org/10.1016/j.jpba.2019.06.044

    Article  CAS  Google Scholar 

  16. Batista E, Pinto L, Filipe E, Van der Veen A (2007) Calibration of micropipettes: test methods and uncertainty analysis. Measurement 40(3):338–342. https://doi.org/10.1016/j.measurement.2006.05.012

    Article  Google Scholar 

  17. Woźniak L, Marszalek K, Skąpska S, Jedrzejczak R (2017) Novel method for HPLC analysis of triterpenic acids using 9-anthryldiazomethane derivatization and fluorescence detection. Chromatographia 80(10):1527–1533. https://doi.org/10.1007/s10337-017-3371-6

    Article  CAS  Google Scholar 

  18. Kim N, Shin YJ, Park S, Yoo G, Kim YJ, Yoo HH, Kim SH (2017) Simultaneous determination of six compounds in Hedera helix L. using UPLC-ESI–MS/MS. Chromatographia 80(7):1025–1033. https://doi.org/10.1007/s10337-017-3317-z

    Article  CAS  Google Scholar 

  19. Lima AMB, d’Avila LA, Siani AC (2014) Comparison between methyl and trimethylsilyl ester derivatives in the separation and GC quantification of triterpene acids in Eugenia brasiliensis leaf extract. Chromatographia 77(7–8):629–635. https://doi.org/10.1007/s10337-014-2659-z

    Article  CAS  Google Scholar 

  20. Srivastava P, Ajayakumar PV, Shanker K (2014) Box-Behnken design for optimum extraction of biogenetic chemicals from P. lanceolata with an energy audit (thermal × microwave × acoustic): a case study of HPTLC determination with additional specificity using on-line/off-line coupling with DAD/NIR/ESI-MS. Phytochem Anal 25(6):551–560. https://doi.org/10.1002/pca.2529

    Article  CAS  Google Scholar 

  21. Vashistha VK, Bhushan R (2020) Thin-layer chromatographic enantioseparation of atenolol and propranolol using (S)-naproxen as chiral selector: direct and indirect approaches. J Planar Chromatogr 33:101–107. https://doi.org/10.1007/s00764-020-00017-0

    Article  CAS  Google Scholar 

  22. El-Shoubashy OH-E, Beltagy YAEM, Issa AE, El-Kafrawy DS (2020) Comparative study of HPLC-DAD and HPTLC for the simultaneous determination of a new multitarget antidiabetic ternary mixture in combined tablets. J Planar Chromatogr 33:59–70. https://doi.org/10.1007/s00764-019-00003-1

    Article  CAS  Google Scholar 

  23. Della Greca M, Fiorention A, Monaco P, Previtera L (1994) Cycloartane triterpenes from Juncus effusus. Phytochemistry 35(4):1017–1022. https://doi.org/10.1016/S0031-9422(00)90659-9

    Article  CAS  Google Scholar 

  24. Smina TP, Mathew J, Janardhanan KK, Devasagayam TPA (2011) Antioxidant activity and toxicity profile of total triterpenes isolated from Ganoderma lucidum (Fr.) P. Karst occurring in South India. Environ Toxicol Pharmacol 32(3):438–446. https://doi.org/10.1016/j.etap.2011.08.011

    Article  CAS  Google Scholar 

  25. Conner AH, Nagasampagi BA, Rowe JW (1980) Terpenoid and other extractives of western white pine bark. Phytochemistry 19(6):1121–1131. https://doi.org/10.1016/0031-9422(80)83068-8

    Article  CAS  Google Scholar 

  26. Wagner H, Bauer R, Melchart D, Xiao P-G, Staudinger A (2011) Radix codonopsis pilosulae Dangshen. Chromatographic fingerprint analysis of herbal medicines. Springer Verlag, Germany. https://doi.org/10.1007/978-3-7091-0763-8_21

    Book  Google Scholar 

  27. Martelanc M, Naumoska K, Vovk I (2016) Determination of common triterpenoids and phytosterols in vegetable waxes by HPTLC-densitometry and HPTLC-image analysis. J Liq Chromatogr Rel Technol 39(5–6):312–321. https://doi.org/10.1080/10826076.2016.1165576

    Article  CAS  Google Scholar 

  28. Wagner H, Bauer R, Melchart D, Xiao PG, Staudinger A (2015) Caulis Bambause in Tenia - Zhuru, vol 3. Chromatographic fingerprint analysis of herbal medicines. Springer International Publishing, Swtizerland. https://doi.org/10.1007/978-3-319-06047-7_12

    Book  Google Scholar 

  29. Maurya P, Srivastava M, Shanker K (2018) Simultaneous quantification of six polymethoxyflavones in Gardenia lucida Roxb. using high-performance thin-layer chromatography. J Planar Chromatogr 31(4):309–317. https://doi.org/10.1556/1006.2018.31.4.6

    Article  CAS  Google Scholar 

  30. Shanker K, Gupta S, Srivastava P, Srivastava KS, Singh CS, Gupta MM (2011) Simultaneous determination of three steroidal glycoalkaloids in Solanum xanthocarpum by high performance thin layer chromatography. J Pharmaceut Biomed Anal 54(3):497–502. https://doi.org/10.1016/j.jpba.2010.09.025

    Article  CAS  Google Scholar 

  31. Konieczka P, Namieśnik J (2010) Estimating uncertainty in analytical procedures based on chromatographic techniques. J Chromatogr A 1217(6):882–891. https://doi.org/10.1016/j.chroma.2009.03.078

    Article  CAS  Google Scholar 

  32. Wani MS, Gupta RC, Pradhan SK, Munshi AH (2018) Estimation of four triterpenoids, betulin, lupeol, oleanolic acid, and betulinic acid from bark, leaves, and roots of Betula utilis D. Don using a validated high-performance thin-layer chromatographic method. J Planar Chromatogr 31(3):220–229. https://doi.org/10.1556/1006.2018.31.3.7

    Article  CAS  Google Scholar 

  33. Srivastava M, Maurya P, Mishra S, Kumar N, Shanker K (2019) Chemotaxonomic differentiation of Clerodendrum species based on high-performance thin-layer chromatographic fingerprinting of key secondary metabolites and chemometric data analysis. J Planar Chromatogr 32:211–222. https://doi.org/10.1556/1006.2019.32.3.6

    Article  CAS  Google Scholar 

Download references

Code availability

Not applicable.

Funding

The authors thank the Director, CSIR-CIMAP, Lucknow, for providing the necessary research facilities and infrastructure for this work. One of the authors, S. M., wants to thank the Department of Science and Technology India for providing INSPIRE fellowship (IF150254).

Author information

Authors and Affiliations

Authors

Contributions

S. M. developed the method, compiled data for method optimization and draft manuscript. R. D. performed the extraction experiments. N. G. performed the sample optimization experiments. K. S. analyzed the data, planned and supervised the overall experiment, and did proof-reading of the manuscript.

Corresponding author

Correspondence to Karuna Shanker.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 366 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Ramdas, Gupta, N. et al. HPTLC method for the simultaneous determination of six bioactive terpenoids in Putranjiva roxburghii Wall.. JPC-J Planar Chromat 33, 353–364 (2020). https://doi.org/10.1007/s00764-020-00047-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00764-020-00047-8

Keywords

Navigation