Skip to main content
Log in

Influence of Chronic Man-made Pollution on Bromus inermis Genome Size

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract—

Technogenic pollution can accelerate microevolutionary processes in natural populations. We estimated the nuclear DNA content of 10 Bromus inermis Leyss. samples from the Middle and Southern Urals (Russia) by flow cytometry. These populations have grown under different levels of man-made pollution (heavy metals and radionuclides) and background (unexposed) localities. All populations of B. inermis had similar DNA contents, ranging from 21.82 to 23.55 pg/2C. The average DNA content of 22.61 ± 0.45 pg/2C, corresponding to a genome size of 11 056 Mbp/1C, indicates that all tested populations represent the octoploid form (2n = 56). Using a Bayesian linear mixed-effects model, the current materials were compared with previously published data. In general, the DNA contents of the impact populations did not deviate from the background density (p = 0.073–0.983). The current preliminary data do not confirm nor refute the presence of aneuploids in impacted B. inermis populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Pozolotina, V.N., Molchanova, I.V., Karavaeva, E.N., Mikhaylovskaya, L.N., and Antonova, E.V., The Current State of Terrestrial Ecosystems at the East Ural Radioactive Trace Area: Contamination Levels and Biological Effects, Yekaterinburg: Goschitsky Press, 2008.

    Google Scholar 

  2. Mehes-Smith, M. and Nkongolo, K.K., Physiological and cytological responses of Deschampsia cespitosa and Populus tremuloides to soil metal contamination, Water Air Soil Pollut., 2015, vol. 226, no. 4, pp. 125.

    Google Scholar 

  3. Słomka, A., Siwińska, D., Wolny, E., Kellner, K., and Kuta, E., Influence of a heavy-metal-polluted environment on Viola tricolor genome size and chromosome number, Acta Biol. Cracov., Ser. Bot., 2011, vol. 53, no. 1, pp. 7–15.

    Google Scholar 

  4. Oudalova, A.A., Geras’kin, S.A., Dikarev, V.G., Nes-terov, Y.B., and Dikareva, N.S., Induction of chromosome aberrations is non-linear within the low dose region and depends on dose rate, Radiat. Prot. Dosim., 2002, vol. 99, nos. 1–4, pp. 245–248.

    CAS  Google Scholar 

  5. Pozolotina, V.N. and Antonova, E.V., Temporal variability of the quality of Taraxacum officinale seed progeny from the East-Ural Radioactive Trace: Is there an interaction between low level radiation and weather conditions?, Int. J. Radiat. Biol., 2017, vol. 93, no. 3, pp. 330–339.

    CAS  PubMed  Google Scholar 

  6. Williams, W.M., Stewart, A.V., and Williamson, M.L., Bromus, in Wild Crop Relatives: Genomic and Breeding Resources: Millets and Grasses, Chttaranjan Kole, Ed., Springer, 2011, pp. 15–30.

    Google Scholar 

  7. Himmelbauer, M.L., Vateva, V., Lozanova, L., Loiskandl, W., and Rousseva, S., Root characteristics of Lotus corniculatus L. and Bromus inermis L. grown on eroded rangeland in a semi-arid area of South Bulgaria, Root Research and Applications, Proc. Inst. Symp., Vienna, Austria, 2009, pp. 1–3.

  8. Tuna, M., Vogel, K.P., Gill, K.S., and Arumuganathan, K., C-banding analyses of Bromus inermis genomes, Crop Sci., 2004, vol. 44, no. 1, pp. 31–37.

    CAS  Google Scholar 

  9. Stebbins, G.L., Cytogenetics and evolution of the grass family, Am. J. Bot., 1956, vol. 43, pp. 890–905.

    Google Scholar 

  10. Pillay, M., Chloroplast DNA similarity of smooth bromegrass with other pooid cereals: Implications for plant breeding, Crop Sci., 1995, vol. 35, no. 3, pp. 869–875.

    CAS  Google Scholar 

  11. Antonova, E.V., Shoeva, O.Y., and Khlestkina, E.K., Biochemical and genetic polymorphism of Bromopsis inermis populations under chronic radiation exposure, Planta, 2019, vol. 249, no. 6, pp. 1977–1985.

    CAS  PubMed  Google Scholar 

  12. Antonova, E.V., Pozolotina, V.N., and Karimullina, E.M., Variation in the seed progeny of smooth brome grass, Bromus inermis Leyss., under conditions of chronic irradiation in the zone of the Eastern Ural Radioactive Trace, Russ. J. Ecol., 2014, vol. 45, no. 6, pp. 508−516.

    Google Scholar 

  13. Antonova, E.V., Pozolotina, V.N., and Karimullina, E.M., Time-dependent changes of the physiological status of Bromus inermis Leyss. seeds from chronic low level radiation exposure areas, Biol. Rhythm Res., 2015, vol. 46, no. 4, pp. 587−600.

    CAS  Google Scholar 

  14. Karimullina, E.M., Mikhailovskaya, L.N., Pozolotina, V.N., and Antonova, E.V., Radionuclide uptake and dose assessment of 14 herbaceous species from the East-Ural Radioactive Trace area using the ERICA Tool, Environ. Sci. Pollut. Res., 2018, vol. 25, no. 14, pp. 13 975–13 987.

    Google Scholar 

  15. Pozolotina, V.N., Molchanova, I.V., Mikhaylovskaya, L.N., Antonova, E.V., and Karavaeva, E.N., The current state of terrestrial ecosystems in the Eastern Ural Radioactive Trace, in Radionuclides: Sources, Properties and Hazards, Gerada, J.G., Ed., New York: Nova Science, 2012, pp. 1−22.

    Google Scholar 

  16. Shevchenko, V., Pechkurenkov, V., and Abramov, V., Radiation Genetics of Natural Populations. Genetic Consequences of the Kyshtym Accident, Moscow: Nauka, 1992.

    Google Scholar 

  17. Ecological Consequences of Radioactive Contamination in the Southern Urals, Sokolov, V.E. and Krivolutsky, D.A., Eds., Moscow: Nauka, 1993.

    Google Scholar 

  18. Pozolotina, V.N., Antonova, E.V., and Shimalina, N.S., Adaptation of greater plantain, Plantago major L., to long-term radiation and chemical exposure, Russ. J. Ecol., 2016, vol. 47, no. 1, pp. 1–10.

    CAS  Google Scholar 

  19. State Report On the State and Protection of the Environment in the Russian Federation in the Year 2016, Moscow: SIA-Nature, 2017.

  20. Chibilyov, A. and Chibilyov, A., Urals natural zoning based on latitudinal belts, elevation zones and vertical differentiation of landscapes, Vestn. Samarsk,Nauch. Tsentra Ross. Akad. Nauk, 2012, vol. 14, nos. 1–6, pp. 1660–1665.

    Google Scholar 

  21. Mukhin, V.A., Tretyakova, A.S., Teptina, A.Y., Kutlunina, N.A., Zimnitskaya, S.A., Goncharova, S.E., Yudin, M.M., and Berezina, A.Y., Flora and Vegetation of the Biological Station of the Ural State University, Yekaterinburg: Ural. Gos. Univ., 2003.

    Google Scholar 

  22. Molchanova, I., Mikhailovskaya, L., Antonov, K., Pozolotina, V., and Antonova, E., Current assessment of integrated content of long-lived radionuclides in soils of the head part of the East Ural Radioactive Trace, J. Environ. Radioact., 2014, vol. 138, no. 6, pp. 238−248.

    CAS  PubMed  Google Scholar 

  23. Ladonin, D., The effect of iron and clay minerals on the adsorption of copper, zinc, lead, and cadmium in the nodular horizon of podzolic soil, Euras. Soil Sci., 2003, vol. 36, no. 10, pp. 1065–1073.

    Google Scholar 

  24. Bezel, V.S., Zhuikova, T.V., and Pozolotina, V.N., The structure of dandelion cenopopulations and specific features of heavy metal accumulation, Russ. J. Ecol., 1998, vol. 29, no. 5, pp. 331–337.

    Google Scholar 

  25. Fuchs, J., Jovtchev, G., and Schubert, I., The chromosomal distribution of histone methylation marks in gymnosperms differs from that of angiosperms, Chromosome Res., 2008, vol. 16, no. 6, pp. 891–898.

    CAS  PubMed  Google Scholar 

  26. Bates, D., Mächler, M., Bolker, B., and Walker, S., Fitting linear mixed-effects models using lme4, J. Stat. Softw., 2015, vol. 67, no. 1, pp. 1–48.

    Google Scholar 

  27. Fox, J., Effect displays in R for generalised linear models, J. Stat. Softw., 2003, vol. 8, no. 1, pp. 1–27.

    Google Scholar 

  28. Fox, J. and Weisberg, S., An R Companion to Applied Regression, 2nd ed., SAGE Publ., Inc., 2011.

    Google Scholar 

  29. Andersson, P., Garnier-Laplace, J., Beresford, N.A., Copplestone, D., Howard, B.J., Howe, P., Oughton, D., and Whitehouse, P., Protection of the environment from ionising radiation in a regulatory context (protect): Proposed numerical benchmark values, J. Environ. Radioact., 2009, vol. 100, no. 12, pp. 1100–1108.

    CAS  PubMed  Google Scholar 

  30. Omar-Nazir, L., Shi, X., Moller, A., Mousseau, T., Byun, S., Hancock, S., Seymour, C., and Mothersill, C., Long-term effects of ionizing radiation after the Chernobyl accident: Possible contribution of historic dose, Environ. Res., 2018, vol. 165, pp. 55–62.

    CAS  PubMed  Google Scholar 

  31. Joachimiak, A., Kula, A., Sliwinska, E., and Sobieszczanska, A., C-banding and nuclear DNA amount in six Bromus species, Acta Biol. Cracov. Ser. Bot., 2001, vol. 43, pp. 105–115.

    Google Scholar 

  32. Tuna, M., Vogel, K.P., Arumuganathan, K., and Gill, K.S., DNA content and ploidy determination of bromegrass germplasm accessions by flow cytometry, Crop Sci., 2001, vol. 41, no. 5, pp. 1629–1634.

    Google Scholar 

  33. Bennett, M.D. and Smith, J.B., Nuclear DNA amounts in angiosperms, Philos. Trans. R. Soc. Lond. B, 1976, vol. 274, pp. 227–276.

    CAS  Google Scholar 

  34. Bai, P., Alverson, W.S., Follansbee, A., and Waller, D.M., New reports of nuclear DNA content for 407 vascular plant taxa from the United States, Ann. Bot., 2012, vol. 110, no. 8, pp. 1623–1629.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Frolova, N.P., Popova, O.N., and Tasayev, A., Increase in the frequency of teratological changes in Plantago lanceolata L. sprouts of the fifth post-accidental reproduction in the 30-km zone of the Chernobyl NPP, Radiobiology, 1993, vol. 33, no. 2, pp. 179–182.

    CAS  PubMed  Google Scholar 

  36. Nikitaki, Z., Hola, M., Dona, M., Pavlopoulou, A., Michalopoulos, I., Angelis, K.J., Georgakilas, A.G., Macovei, A., and Balestrazzi, A., Integrating plant and animal biology for the search of novel DNA damage biomarkers, Mutat. Res., 2018, vol. 775, pp. 21–38.

    CAS  PubMed  Google Scholar 

  37. Little, J.B., Radiation-induced genomic instability, Int. J. Radiat. Biol., 1998, vol. 74, no. 6, pp. 663–671.

    CAS  PubMed  Google Scholar 

  38. Mothersill, P., Crean, M., Lyons, M., McSweeney, J., Mooney, R., O’Reilly, J., and Seymour, P.B., Expression of delayed toxicity and lethal mutations in the progeny of human cells surviving exposure to radiation and other environmental mutagens, Int. J. Radiat. Biol., 1998, vol. 74, no. 6, pp. 673–680.

    CAS  PubMed  Google Scholar 

  39. Ries, G., Heller, W., Puchta, H., Sandermann, H., Seidlitz, H.K., and Hohn, B., Elevated UV-B radiation reduces genome stability in plants, Nature, 2000, vol. 406, p. 98.

    CAS  PubMed  Google Scholar 

  40. Mazurik, V.K. and Mikhailov, V.F., Radiation-induced genomic instability: Phenomenon, molecular mechanisms, pathogenetic significance, Radiat. Biol. Radioecol., 2001, vol. 41, no. 3, pp. 272–289.

    CAS  Google Scholar 

  41. Yamaguchi, H., Shimizu, A., Degi, K., and Morishita, T., Effects of dose and dose rate of gamma ray irradiation on mutation induction and nuclear DNA content in chrysanthemum, Breeding Sci., 2008, vol. 58, no. 3, pp. 331–335.

    Google Scholar 

  42. Roux, N., Toloza, A., Radecki, Z., Zapata-Arias, F.J., and Doležel, J., Rapid detection of aneuploidy in Musa using flow cytometry, Plant Cell Rep., 2003, vol. 21, no. 5, pp. 483–490.

    CAS  PubMed  Google Scholar 

  43. Cuny, F., Grotte, M., De Vaulx, R.D., and Rieu, A., Effects of gamma irradiation of pollen on parthenogenetic haploid production in muskmelon (Cucumis melo L.), Environ. Exp. Bot., 1993, vol. 33, no. 2, pp. 301–312.

    Google Scholar 

  44. Doležel, J., Greilhuber, J., Lucretti, S., Meister, A., Lysák, M.A., Nardi, L., and Obermayer, R., Plant genome size estimation by flow cytometry: Inter-laboratory comparison, Ann. Bot., 1998, vol. 82, Suppl. 1, pp. 17–26.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Professor Vera N. Pozolotina (IPAE UB RAS) for her help in the field research and for her recommendations on the article. We also immensely thank Dr. Vladimir S. Mikryukov (IPAE UB RAS) for his help in writing the scripts for the R-program and analysing the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Antonova.

Ethics declarations

FUNDING

The collection of field material, radiochemical and spectrometric analyses and soil studies, and dose load calculations were carried out with the support of the Russian Foundation for Basic Research (project no 11-04-01260). The evaluation of genome size was supported by Deutsche Forschungsgemeinschaft (project RO 1055/12-1). The determination of the heavy metal concentrations in the soils, data analysis and interpretation of the results were supported by the State Contract of the Institute of Plant and Animal Ecology UB RAS (no. 0400-2019-0006).

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonova, E.V., Fuchs, J. & Röder, M.S. Influence of Chronic Man-made Pollution on Bromus inermis Genome Size. Russ J Ecol 51, 337–344 (2020). https://doi.org/10.1134/S1067413620040025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413620040025

Keywords:

Navigation