Skip to main content
Log in

Construction and verification of retinal vessel segmentation algorithm for color fundus image under BP neural network model

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

To improve the accuracy of retinal vessel segmentation, a retinal vessel segmentation algorithm for color fundus images based on back-propagation (BP) neural network is proposed according to the characteristics of retinal blood vessels. Four kinds of green channel image enhancement results of adaptive histogram equalization, morphological processing, Gaussian matched filtering, and Hessian matrix filtering are used to form feature vectors. The BP neural network is input to segment blood vessels. Experiments on the color fundus image libraries DRIVE and STARE show that this algorithm can obtain complete retinal blood vessel segmentation as well as connected vessel stems and terminals. When segmenting most small blood vessels, the average accuracy on the DRIVE library reaches 0.9477, and the average accuracy on the STARE library reaches 0.9498, which has a good segmentation effect. Through verification, the algorithm is feasible and effective for blood vessel segmentation of color fundus images and can detect more capillaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schmidt TG, Linderman RE, Strampe MR et al (2019) The utility of frame averaging for automated algorithms in analyzing retinal vascular biomarkers in AngioVue OCTA. Transl Vis Sci Technol 8(1):10–10

    Article  Google Scholar 

  2. Khan MAU, Khan TM, Soomro TA et al (2019) Boosting sensitivity of a retinal vessel segmentation algorithm. Pattern Anal Appl 22(2):583–599

    Article  MathSciNet  Google Scholar 

  3. Wang W, Wang W, Hu Z (2019) Retinal vessel segmentation approach based on corrected morphological transformation and fractal dimension. IET Image Proc 13(13):2538–2547

    Article  Google Scholar 

  4. Zhao S, Liu T, Liu B et al (2020) Attention residual convolution neural network based on U-net (AttentionResU-Net) for retina vessel segmentation. E&ES 440(3):032138

    Google Scholar 

  5. Liu ZF, Zhang YZ, Liu PZ et al (2018) Retinal vessel segmentation using densely connected convolution neural network with colorful fundus images. J Med Imaging Health Inf 8(6):1300–1307

    Article  Google Scholar 

  6. Feucht N, Maier M, Lepennetier G et al (2019) Optical coherence tomography angiography indicates associations of the retinal vascular network and disease activity in multiple sclerosis. Multiple Sclerosis J 25(2):224–234

    Article  Google Scholar 

  7. Stamov G, Stamova I, Martynyuk A et al (2020) Design and practical stability of a new class of impulsive fractional-like neural networks. Entropy 22(3):337

    Article  MathSciNet  Google Scholar 

  8. Zambra M, Maritan A, Testolin A (2020) Emergence of network motifs in deep neural networks. Entropy 22(2):204

    Article  MathSciNet  Google Scholar 

  9. Moldovan A, Caţaron A, Andonie R (2020) Learning in feedforward neural networks accelerated by transfer entropy. Entropy 22(1):102

    Article  MathSciNet  Google Scholar 

  10. Tang X, Zhang X (2020) Conditional adversarial domain adaptation neural network for motor imagery EEG decoding. Entropy 22(1):96

    Article  MathSciNet  Google Scholar 

  11. Du K, Wan P, Wang Y et al (2020) Spectrum sensing method based on information geometry and deep neural network. Entropy 22(1):94

    Article  MathSciNet  Google Scholar 

  12. Liu H, Liu J, Yang W et al (2020) Analysis and prediction of land use in Beijing-Tianjin-Hebei region: a study based on the improved convolutional neural network model. Sustainability 12(7):3002

    Article  Google Scholar 

  13. Hwang JK, Duhirwe PN, Yun GY et al (2020) A novel hybrid deep neural network model to predict the refrigerant charge amount of heat pumps. Sustainability 12(7):2914

    Article  Google Scholar 

  14. Kachba Y, Chiroli DMG, Belotti JT et al (2020) Artificial neural networks to estimate the influence of vehicular emission variables on morbidity and mortality in the largest metropolis in South America. Sustainability 12(7):2621

    Article  Google Scholar 

  15. Chung J, Kim HJ (2020) An automobile environment detection system based on deep neural network and its implementation using IoT-enabled in-vehicle air quality sensors. Sustainability 12(6):2475

    Article  Google Scholar 

  16. Yang Y, Zheng X, Sun Z (2020) Coal resource security assessment in china: a study using entropy-weight-based TOPSIS and BP neural network. Sustainability 12(6):2294

    Article  Google Scholar 

  17. Huang J, Kang J, Wang H et al (2020) A novel approach to measuring urban waterlogging depth from images based on mask region-based convolutional neural network. Sustainability 12(5):2149

    Article  Google Scholar 

  18. Han Y, Zhou L, Gao P et al (2020) Research on BP neural network-based dynamic travel time prediction method. J Ocean Univ China (Nat Sci Ed) 50(2):142–154

    MATH  Google Scholar 

  19. Zhang H, Zheng NS, Feng QL (2019) BP neural network assisted NDVI inversion of GNSS reflected signal. Sci Technol Eng 19(36):81–86

    Google Scholar 

  20. Wu P, Xu JY, Wang YR, Yu B (2019) An elevator noise evaluation method based on BP neural network. Digital Technol Appl 37(12):76–78

    Google Scholar 

  21. Cheng Y, Ma M, Zhang L et al (2020) Retinal blood vessel segmentation based on Densely connected U-net. Math Biosci Eng 17(4):3088

    Article  Google Scholar 

  22. Escobar MA, Guzmán Sepúlveda JR, Michel P et al (2019) Una propuesta para medir la similaridad entre imágenes segmentadas de la red vascular de la retina. Nova Sci 11(22):224–245

    Article  Google Scholar 

  23. Hassan G, Hassanien AE (2018) Retinal fundus vasculature multilevel segmentation using whale optimization algorithm. SIViP 12(2):263–270

    Article  Google Scholar 

  24. Singh L, Sree SR, Likhita P et al (2019) Robust retinal blood vessel segmentation to detect diabetic retinopathy. Int J Appl Res Inf Technol Comput 10(3):111–123

    Article  Google Scholar 

  25. Al Sariera TM, Rangarajan L (2018) Extraction of blood vessels in retina. J Inf Technol Res (JITR) 11(4):122–136

    Article  Google Scholar 

  26. Yan H, Wang LJ, Gao L et al (2019) Evaluation of fault sealing based on BP neural network. Complex Oil Gas Reservoirs 12(4):15–18

    Google Scholar 

  27. Almotiri J, Elleithy K, Elleithy A (2018) Retinal vessels segmentation techniques and algorithms: a survey. Appl Sci 8(2):155

    Article  Google Scholar 

  28. Bozic I, Li X, Tao Y (2018) Quantitative biometry of zebrafish retinal vasculature using optical coherence tomographic angiography. Biomed. Optics Express 9(3):1244–1255

    Article  Google Scholar 

  29. Samuel PM, Veeramalai T (2019) Multilevel and multiscale deep neural network for retinal blood vessel segmentation. Symmetry 11(7):946

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Baotou Medical College "learning program," "learning program," and "practice program" in 2018 (Grant Number: 2018BYWWJ-ZX-04); innovation and entrepreneurship training program for college students of Baotou Medical College in 2019 (Grant Number: BYDCXL-201922); Bud program of Baotou Medical College in 2019 (Grant Number: 2019BYJJ-HL-11); Baotou Medical and Health Science and Technology in 2019 (Grant Number: wsjj2019040); and Baotou Medical College BeanStalk project in 2020 (Grant Number: 2020BYJJ-11); and Inner Mongolia Natural Science Foundation (Grant Number: 2020MS06001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feifei Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, S., Yu, F. Construction and verification of retinal vessel segmentation algorithm for color fundus image under BP neural network model. J Supercomput 77, 3870–3884 (2021). https://doi.org/10.1007/s11227-020-03422-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-020-03422-8

Keywords

Navigation