Skip to main content
Log in

Thermal Barrier Coatings Based on ZrO2 Solid Solutions

  • PROTECTIVE AND FUNCTIONAL POWDER COATINGS
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The standard material of the ceramic layer in thermal barrier coatings (TBCs)—a solid solution of ZrO2 stabilized with (6–8 wt.%) Y2O3 (YSZ)—approaches the temperature limit of its application (<1200°C) because the ZrO2 t′ phase sinters and undergoes t′-ZrO2 → T-ZrO2 + F-ZrO2 phase transformations to form M-ZrO2 at elevated temperatures. Ceramic materials for a new generation of TBCs need to be developed to increase the operating temperature (up to 1600°C), efficiency, and productivity of gas-turbine engines. The overview paper analyzes research efforts focusing on the development of TBCs using solid solutions of ZrO2 with rare-earth metal and titanium oxides. When Y2O3 in YSZ is partially substituted by CeO2, TiO2, La2O3, Sc2O3, Gd2O3, Nd2O3, Yb2O3, Er2O3, and Ta2O5, ceramics with high phase stability (ZrO2 t′ phase being retained in the coating) up to 1500°C, lower thermal conductivity, and required fracture toughness and sintering resistance but shorter thermal fatigue life than that of standard YSZ are produced. The concepts of greater tetragonality of the ZrO2 t′ phase (ceramics in the ZrO2–CeO2–TiO2 system) and a ‘multicomponent defective cluster’ (ceramics in the ZrO2–Y2O3–Nd2O3 (Gd2O3, Sm2O3)–Yb2O3 (Sc2O3) system) explain how the operating temperature of the TBC ceramic layer increases to 1350°C and 1600°C, respectively. The thermal conductivity of TBC ceramics in the binary ZrO2–CeO2, ZrO2–Er2O3, ZrO2–Sm2O3, ZrO2–Nd2O3, ZrO2–Gd2O3, ZrO2–Dy2O3, and ZrO2–Yb2O3 systems is lower than that of YSZ. Ceramics with high phase stability and low thermal conductivity have been produced in the ternary ZrO2–Sc2O3–Gd2O3, ZrO2–CeO2–Gd2O3, ZrO2–YbO1.5–TaO2.5, and ZrO2–Yb2O3–TiO2 systems. An integrated approach is needed to choose the composition of the ceramic layer based on the ZrO2 solid solution, select the coating technique, and improve the coating architecture to design effective TBCs with balanced properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. S.M. Lakiza, M.I. Grechanyuk, O.K. Ruban, V.P. Redko, M.S. Glabay, O.B. Myloserdov, O.V. Dudnik, and S.V. Prokhorenko, “Thermal barrier coatings: current status, search, and analysis,” Powder Metall. Met. Ceram., 57, No. 1–2, 82–113 (2018).

  2. X.Q. Cao, R. Vassen, and D. Stoever, “Ceramic materials for thermal barrier coatings,” J. Eur. Ceram. Soc., 24, 1–10 (2004).

    CAS  Google Scholar 

  3. S. Thomas Hille, Thijs J. Nijdam, Akke S.J. Suiker, Sergio Turteltaub, and Wim G. Sloof, “Damage growth triggered by interface irregularities in thermal barrier coatings,” Acta Mater., 57, 2624–2630 (2009).

  4. Vijay Kumar and Balasubramanian Kandasubramanian, “Review processing and design methodologies for advanced and novel thermal barrier coatings for engineering applications,” Particuology, 27, 1–28 (2016).

    CAS  Google Scholar 

  5. M. Ranjbar-Far, J. Absi, S. Shahidi, and G. Mariaux, “Impact of the non-homogenous temperature distribution and the coatings process modeling on the thermal barrier coatings system,” Mater. Des., 32, 728–735 (2011).

    CAS  Google Scholar 

  6. S.A. Budinovskii, D.A. Chubarov, and P.V. Matveev, “Current methods for depositing thermal barrier coatings for gas-turbine engine blades (review),” Aviats. Mater. Tekhnol., No. 5, 38–44 (2014).

  7. D.S. Kashin and P.A. Stekhov, “Modern thermal barrier coatings produced by electron-beam deposition (overview),” Tr VIAM, 62, No. 2, 84–90 (2018).

  8. K. Masera and A.K. Hossain, “Biofuels and thermal barrier: A review on compression ignition engine performance, combustion and exhaust gas emission,” J. Energy Inst., 92, 783–801 (2019).

    CAS  Google Scholar 

  9. R. Vaßen, M.O. Jarligo, T. Steinke, D.E. Mack, and D. Stöver, “Overview on advanced thermal barrier coatings,” Surf. Coat. Technol., 205, 938–942 (2010).

    Google Scholar 

  10. Az. D. Johari and Md.M. Rahman, “A review of advance thermal barrier coating architecture,” in: Proc. 3rd National Graduate Conference (NatGrad2015) (Universiti Tenaga Nasional, Putrajaya Campus, April 8–9, 2015), Kajang, Selangor, Malaysia (2015), pp. 131–138; ISBN 978-967-5770-63-0.

  11. S. Raghavan, H. Wang, W.D. Porter, R.B. Dinwiddie, and M.J. Mayo, “Thermal properties of zirconia codoped with trivalent and pentavalent oxides,” Acta Mater., 49, 169–179 (2001).

    CAS  Google Scholar 

  12. R. Darolia, “Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects,” Int. Mater. Rev., 58, 315–348 (2013).

    CAS  Google Scholar 

  13. J.R. Nicholls, K.J. Lawson, A. Johnstone, and D.S. Rickerby, “Methods to reduce the thermal conductivity of EB-PVD TBCs,” Surf. Coat. Technol., 151, 383–391 (2002).

    Google Scholar 

  14. S.A. Tsipas, “Effect of dopants on the phase stability of zirconia-based plasma sprayed thermal barrier coatings,” J. Eur. Ceram. Soc., 30, 61–72 (2010).

    CAS  Google Scholar 

  15. L. Guo, H. Guon, Sh. Gong, and H. Xu, “Improvement on the phase stability, mechanical properties and thermal insulation of Y2O3-stabilized ZrO2 by Gd2O3 and Yb2O3 co-doping,” Ceram. Int., 39, 9009–9015 (2013).

    CAS  Google Scholar 

  16. J. Fong and A.V. Virkar, “Microstructural characterization and mechanical properties of polycrystalline t′- zirconia,” J. Am. Ceram. Soc., 73, No. 12, 3650–3657 (1990).

    Google Scholar 

  17. V. L’antezi, A.H. Heuer, and T.E. Mitchell, “Tetragonal phase in the system ZrO2–Y2O3,” J. Am. Ceram. Soc., 60, No. 3–4, 118–130 (1977).

  18. M. Yoshimaka, M. Yashima, and T. Noma, “Formation of diffusionlessly transformed tetragonal phases by rapid quenching of melts in ZrO2–RO1.5 systems (R = rare earths),” J. Mater. Sci., No. 25, 2011–2016 (1990).

  19. T. Sakuma, “The microstructure and mechanical properties of yttria-stabilized zirconia prepared by arcmelting,” J. Mater. Sci., 20, 2399–2407 (1985).

    CAS  Google Scholar 

  20. Tzer-Shin Sheu, Tseng-Ying Tien, and I-Wei Chen, “Cubic-to-tetragonal (t′) transformation in zirconiacontaining systems,” J. Am. Ceram. Soc., 75, No. 5, 1108–1116 (1992).

    CAS  Google Scholar 

  21. Jan Fong Jue and Anil V. Virkar, “Fabrication, microstructural characterization, and mechanical properties of polycrystalline t′-zirconia,” J. Am. Ceram. Soc., 73, No. 12, 3650–3657 (1990).

  22. D. Michel, L. Mazerolles, M. Perez, and Y. Jorba, “Polydomain crystals of single-phase tetragonal ZrO2: structure, microstructure and fracture toughness,” Adv. Ceram. Sci. Technol. Zirconia II, 12, 139–147 (1985).

    Google Scholar 

  23. G.V. Srinivasan and A.V. Virkar, “Ferroelastic domain switching in polydomain tetragonal zirconia single crystals,” J. Am. Ceram. Soc., 72, No. 11, 2098–2103 (1989).

    CAS  Google Scholar 

  24. H. Yoshikawa and H. Sato, “Phase diagram and microstructure of partially stabilized zirconia,” J. Prosthet. Dent., 50, No. 12, 1101–1108 (1986).

    CAS  Google Scholar 

  25. A.H. Heuer, V. Lanteri, and A. Dominquez-Rodriquez, “High-temperature precipitation hardening of Y2O3 partially stabilized ZrO2 (Y-PSZ) single crystals,” Acta Metall., 37, No. 2, 559–567 (1989).

    CAS  Google Scholar 

  26. T. Sakuma, Y.-I. Yoshizawa, and H.Y. Sato, “The modulated structure formed by isothermal ageing in ZrO2–5.2 mol.% Y2O3 alloy,” J. Mater. Sci., 20, 1085–1092 (1985).

    CAS  Google Scholar 

  27. L. Archana and S. Ashutosh, “Effect of high-temperature aging on the fracture toughness of ytterbiastabilized t′-zirconia,” Scr. Mater., 67, 285–288 (2012).

    Google Scholar 

  28. Zh. Qu, K. Wei, Q. He, R. He, Y. Pei, Sh. Wang, and D. Fang, “High temperature fracture toughness and residual stress in thermal barrier coatings evaluated by an in-situ indentation method,” Ceram. Int., 44, No. 7, 7926–7929 (2018).

  29. H.J. Hannink, P.M. Kelly, and B.C. Muddle, “Transformation toughening in zirconia-containing ceramics,” J. Am. Ceram. Soc., 83, 461–487 (2000).

    CAS  Google Scholar 

  30. F.R. Chien, F.J. Ubic, V. Prakash, and A.H. Heuer, “Stress-induced martensitic transformation and ferroelastic deformation adjacent hardness indents in tetragonal zirconia single crystals,” Acta Mater., 46, No. 6, 2151–2171 (1998).

    CAS  Google Scholar 

  31. V. Anil and R. David, “The tetragonal monoclinic transformation in zirconia: Lessons learned and future trends,” J. Am. Ceram. Soc., 92, No. 9, 1901–1920 (2009).

    Google Scholar 

  32. A.V. Vircar and R.L. Matsumoto, “Ferroelastic domain in switching as a toughening mechanism in tetragonal zirconia,” J. Am. Ceram. Soc., 69, No. 10, 224–226 (1986).

    Google Scholar 

  33. J.F. Jue and A.V. Vircar, “Fabrication, microstructural characterization and mechanical properties of polycrystalline t′-zirconia,” J. Am. Ceram. Soc., 73, No. 12, 3650–3657 (1990).

    CAS  Google Scholar 

  34. A.V. Virkar and R.L.K. Matsumoto, “Toughening mechanism in tetragonal zirconia polycrystalline (TZP) ceramics,” Sci. Technol. Zirconia III, 24, 653–663 (1988).

    Google Scholar 

  35. J.R. Mercer, D.R. Williams, and A.G. Evans, “On a ferroelastic mechanism governing the toughness of metastable tetragonal-prime yttria-stabilized zirconia,” Proc. R. Soc. A, 463, 1393–1408 (2007), https://doi.org/10.1098/rspa.2007.1829.

    Article  CAS  Google Scholar 

  36. J.A. Krogstad, Y. Gao, J. Bai, J. Wang, D.M. Lipkin, and C.G. Levi, “In situ diffraction study of the hightemperature decomposition of t′-zirconia,” J. Am. Ceram. Soc., 98, 247–254 (2015).

    CAS  Google Scholar 

  37. K.Yu. Yakovchuk and Yu.E. Rudoy, “One-stage electron-beam deposition of thermal barrier gradient coatings,” Sovr. Elektrometall., No. 2(71), 10–16 (2003).

  38. K.Yu. Yakovchuk, Yu.E. Rudoy, L.M. Nerodenko, E.V. Onoprienko, and A.O. Akhtyrskii, “Effect of substrate surface curvature on the structure and properties of thermal barrier condensation coatings,” Sovr. Elektrometall., No. 1(102), 22–30 (2011).

  39. K.Yu. Yakovchuk, Yu.E. Rudoy, L.M. Nerodenko, A.V. Mikitchik, and V.A. Akrymov, “Study of functional properties of condensed gradient thermal barrier coatings,” Sovr. Elektrometall., No. 1(114), 28–36 (2014).

  40. Y. Wang, Y. Bai, Q.Z. Yang, J.J. Tang, Y.H. Wang, K. Liu, S.W. Guo, and Z.H. Han, “A transmission electron microscopy study of the microstructure and interface of zirconia-based thermal barrier coatings,” J. Alloys Compd., 619, 820–825 (2015).

    CAS  Google Scholar 

  41. Z. Deng, X. Zhang, K. Zhou, M. Liu, Ch. Deng, J. Mao, and Zh. Chen, “7YSZ coating prepared by PSPVD based on heterogeneous nucleation,” Chin. J. Aeronaut., 31, 820–825 (2018).

    Google Scholar 

  42. J. Cho, J. Li, Z. Shang, J. M. Lopez, J. William Jarosinski, M. M. Gentleman, V. Viswanathan, S. Xue, H. Wang, and X. Zhang, “Comparison of temperature dependent deformation mechanisms of 8YSZ thermal barrier coatings prepared by air-plasma-spray and D-gun thermal spray: An in situ study,” J. Eur. Ceram. Soc., 39, 3120–3128 (2019).

    CAS  Google Scholar 

  43. W. He, G. Mauer, Y.J. Sohn, Al. Schwedt, Ol. Guillon, and R. Vaßen, “Investigation on growth mechanisms of columnar structured YSZ coatings in plasma spray-physical vapor deposition (PS-PVD),” J. Eur. Ceram. Soc., 39, 3129–3138 (2019).

  44. Zh. Wang, L. Du, H. Lan, Ch. Huang, and W. Zhang, “Preparation and characterization of YSZ abradable sealing coating through mixed solution precursor plasma spraying,” Ceram. Int., 45, 11802–11811 (2019).

    CAS  Google Scholar 

  45. B. Bernard, A. Quet, L. Bianchi, A. Joulia, A. Malié, V. Schick, and B. Rémy, “Thermal insulation properties of YSZ coatings: suspension plasma spraying (SPS) versus electron beam physical vapor deposition (EBPVD) and atmospheric plasma spraying (APS),” Surf. Coat. Technol., 318, 122–128 (2017).

    CAS  Google Scholar 

  46. Gulyaev, V. Kuzmin, E. Kornienko, S. Vashchenko, and D. Sergachev, “Microstructure formation properties of ZrO2 coating by powder, suspension and liquid precursor plasma spraying,” Mater. Today Proc., 11, 430–435 (2019).

  47. H.Q. Lavasani, Z. Valefi, N. Ehsani, and S.T. Masoule, “Studying the effect of spraying parameters on the sintering of YSZ TBC using APS method,” Surf. Coat. Technol., 360, 238–246 (2019).

    CAS  Google Scholar 

  48. K.Yu. Yakovchuk, Yu.E. Rudoy, L.M. Nerodenko, E.V. Onoprienko, and A.V. Mikitchik, “Studying the resistance of ZrO2–8% Y2O3 layer in condensed coatings to the effect of calcium, magnesium, aluminum, and silicon oxides (CMAS),” Sovr. Elektrometall., No. 3(112), 24–32 (2013).

  49. D. Shin and A. Hamed, “Influence of microstructure on erosion resistance of plasma sprayed 7YSZ thermal barrier coating under gas turbine operating conditions,” Wear, 396, 34–47 (2018).

    Google Scholar 

  50. L. Steinberg, R. Naraparaju, M. Heckert, Ch. Mikulla, U. Schulz, and Ch. Leyens, “Erosion behavior of EB-PVD 7YSZ coatings under corrosion/erosion regime: Effect of TBC microstructure and the CMAS chemistry,” J. Eur. Ceram. Soc., 38, No. 15, 5101–5112 (2018).

    CAS  Google Scholar 

  51. J. Xia, L. Yang, R.T. Wu, Y.C. Zhou, L. Zhang, K.L. Huo, and M. Gan, “Degradation mechanisms of air plasma sprayed free-standing yttria-stabilized zirconia thermal barrier coatings exposed to volcanic ash,” Appl. Surf. Sci., 481, 860–871 (2019).

    CAS  Google Scholar 

  52. B. Zhang, W. Song, L. Wei, Y. Xiu, X. Huibin, D.B. Dingwell, and H. Guo, “Novel thermal barrier coatings repel and resist molten silicate deposits,” Scr. Mater., 163, 71–76 (2019).

    CAS  Google Scholar 

  53. L. Gao, H. Guo, L. Wei, Ch. Li, Sh. Gong, and H. Xu, “Microstructure and mechanical properties of yttria stabilized zirconia coatings prepared by plasma spray physical vapor deposition,” Ceram. Int., 41, 8305–8311 (2015).

    CAS  Google Scholar 

  54. B.-K. Jang, J. Sun, S. Kim, Y.-S. Ohc, S.-M. Lee, and H.-T. Kim, “Thermal conductivity of ZrO2–4 mol.% Y2O3 thin coatings by pulsed thermal imaging method,” Surf. Coat. Technol., 284, 57–62 (2015).

    CAS  Google Scholar 

  55. K.Yu. Yakovchuk, A.V. Mikitchik, Yu.E. Rudoy, and A.O. Akhtyrskii, “Diffusion barrier layer for hightemperature protective coatings,” Sovr. Elektrometall., No. 4(125), 36–44 (2016).

  56. M. Arai, H. Ochiai, and T. Suidzu, “A novel low-thermal-conductivity plasma-sprayed thermal barrier coating controlled by large pores,” Surf. Coat. Technol., 285, 120–127 (2016).

    CAS  Google Scholar 

  57. C.R.C. Lima, S. Dostac, J.M. Guilemany, and D.R. Clarke, “The application of photoluminescence piezospectroscopy for residual stresses measurement in thermally sprayed TBCs,” Surf. Coat. Technol., 318, 147–156 (2017).

    CAS  Google Scholar 

  58. A. Ganvir, Sh. Joshi, N. Markocsan, and R. Vassen, “Tailoring columnar microstructure of axial suspension plasma sprayed TBCs for superior thermal shock performance,” Mater. Des., 144, 192–208 (2018).

    CAS  Google Scholar 

  59. X. Ren, M. Zhao, J. Feng, and W. Pan, “Phase transformation behavior in air plasma sprayed yttria stabilized zirconia coating,” J. Alloys Compd., 750, 189–196 (2018).

    CAS  Google Scholar 

  60. Y. Fu, C. Shao, C. Cai, Y. Wang, Y. Zhou, and G. Zhou, “Temperature induced structure degradation of yttria-stabilized zirconia thermal barrier coatings,” Surf. Coat. Technol., 351, 21–28 (2018).

    CAS  Google Scholar 

  61. V. Sankar, P.B. Ramkumar, D. Sebastian, D. Joseph, J. Jose, and A. Kurian, “Optimized thermal barrier coating for gas turbine blades,” Mater. Today Proc., 11, 912–919 (2019).

    Google Scholar 

  62. F. Fernández-Rojas, E. Rondón, C. J. Fernández-Rojas, K. J. P. Salas, and V. J. García, “Thermal barrier coating and new materials,” Rev. Facult. Ing., 27, 100–108 (2012).

    Google Scholar 

  63. H. Jamalin, R. Mozafarinia, R.S. Razavi, and R. Ahmadi-Pidani, “Comparison of thermal shock resistances of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings,” Ceram. Int., 38, 6705–6712 (2012).

    Google Scholar 

  64. M. Keshavarz, M.H. Idris, and N. Ahmad, “Mechanical properties of stabilized zirconia nanocrystalline EB-PVD coating evaluated by micro and nano indentation,” J. Adv. Ceram., 2(4), 333–340 (2013), ISSN 2226-4108, https://doi.org/10.1007/s40145-013-0080-y.

  65. S. Nath, I. Manna, and J.D. Majumdar, “Nanomechanical behavior of yttria stabilized zirconia (YSZ) based thermal barrier coating,” Ceram. Int., 41, 5247–5256 (2015).

    CAS  Google Scholar 

  66. M.R. Loghman-Estarki, R.Sh. Razavi, and H. Jamali, “Thermal stability and sintering behavior of plasma sprayed nanostructured 7YSZ, 15YSZ and 5.5SYSZ coatings at elevated temperatures,” Ceram. Int., 42, 14374–14383 (2016).

    CAS  Google Scholar 

  67. J. Wang, J. Sun, H. Zhang, Sh. Dong, J. Jiang, L. Deng, X. Zhou, and X. Cao, “Effect of spraying power on microstructure and property of nanostructured YSZ thermal barrier coatings,” J. Alloys Compd., 730, No. 5, 471–482 (2018).

    CAS  Google Scholar 

  68. F. Zhou, You Wang, Yaming Wang, L. Wang, J. Gou, and W. Chen, “A promising non-transformable tetragonal YSZ nanostructured feedstocks for plasma spraying-physical vapor deposition,” Ceram. Int., 44, No. 1, 1201–1204 (2018).

  69. G. Bolelli, M.G. Righi, M.Z. Mughalb, R. Moscatelli, O. Ligabue, N. Antolotti, M. Sebastiani, L. Lusvarghi, and E. Bemporad, “Damage progression in thermal barrier coating systems during thermal cycling: A nano-mechanical assessment,” Mater. Des., 166, 1–13 (2019).

    Google Scholar 

  70. K.J. Huang, J.T. Chang, A. Davison, K.C. Chen, J.L. He, C.K. Lin, A. Matthews, and A. Leyland, “Thermal cyclic performance of NiAl/alumina-stabilized zirconia thermal barrier coatings deposited using a hybrid arc and magnetron sputtering system,” Surf. Coat. Technol., 201, 3901–3905 (2006).

    CAS  Google Scholar 

  71. L. Górski and A. Pawlowski, “X-ray diffraction and electron microscopy studies on the structure of thermal barrier coatings,” Acta Phys. Pol., 122, No. 2, 405–409 (2012).

    Google Scholar 

  72. A.C. Karaoglanh, G. Erdogan, Y. Kahraman, A. Turk, F. Üstel, and I. Özdemir, “Study of the microstructure and oxidation behavior of YSZ and YSZ/Al2O3 TBCs with HVOF bond coatings,” Mater. Technol., 46, 439–444 (2012).

    Google Scholar 

  73. X.F. Zhang, K.S. Zhou, M. Liub, C.M. Deng, C.G. Deng, J.B. Song, and X. Tong, “Enhanced properties of Al-modified EB-PVD 7YSZ thermal barrier coatings,” Ceram. Int., 42, 13969–13975 (2016).

    CAS  Google Scholar 

  74. J.G. Thakare, R.S. Mulik, and M.M. Mahapatra, “Effect of carbon nanotubes and aluminum oxide on the properties of a plasma sprayed thermal barrier coating,” Ceram. Int., 44, 438–451 (2018).

    CAS  Google Scholar 

  75. P. Carpio, M.D. Salvador, A. Borrell, E. Sánchez, and R. Moreno, “Alumina-zirconia coatings obtained by suspension plasma spraying from highly concentrated aqueous suspensions,” Surf. Coat. Technol., 307, Part A, 713–719 (2016).

  76. V.E. Zamkovoy, V.G. Malysheva, and O.A. Korogod, “Protective coatings for gas turbine engine blades,” Vest. Dvigatelestr., No. 4, 37–43 (2006).

  77. C. Amaya, W. Aperador, J.C. Caicedo, F.J. Espinoza-Beltrán, J. Muñoz-Saldaña, G. Zambrano, and P. Prieto, “Corrosion study of alumina/yttria-stabilized zirconia (Al2O3/YSZ) nanostructured thermal barrier coatings (TBC) exposed to high temperature treatment,” Corros. Sci., 51, 2994–2999 (2009).

    CAS  Google Scholar 

  78. V. Kumar and K. Balasubramanian, “Progress update on failure mechanisms of advanced thermal barrier coatings: a review,” Prog. Org. Coat., 90, 54–82 (2016).

    CAS  Google Scholar 

  79. G.-R. Li, L.-Sh. Wang, and G.-J. Yang, “Achieving self-enhanced thermal barrier performance through a novel hybrid-layered coating design,” Mater. Des., 167, 1–17 (2019).

    CAS  Google Scholar 

  80. G.-R. Li and L.-Sh. Wang, “Durable TBCs with self-enhanced thermal insulation based on co-design on macro- and microstructure,” Appl. Surf. Sci., 483, 472–480 (2019).

    CAS  Google Scholar 

  81. Avci, A.A. Eker, and B. Eke, “Microstructure and oxidation behavior of atmospheric plasma-sprayed thermal barrier coatings,” in: Ibrahim Dincer, C. Ozgur Colpan, and Onder Kizilkan (eds.), Exergetic, Energetic and Environmental Dimensions, Elsevier Inc. (2018), pp. 793–814.

  82. Carlos G. Levi, “Emerging materials and processes for thermal barrier systems,” Curr. Opin. Solid State Mater. Sci., 8, 77–91 (2004).

  83. D.S. Almeida, C.R.M. Silva, M.C.A. Nono, and C.A.A. Cairo, “Thermal conductivity investigation of zirconia co-doped with yttria and niobia EB-PVD TBCs,” Mater. Sci. Eng., 443, 60–65 (2007).

    Google Scholar 

  84. M.P. Schmitt, A.K. Rai, D. Zhu, M.R. Dorfman, and D.E. Wolfe, “Thermal conductivity and erosion durability of composite two-phase air plasma sprayed thermal barrier coatings,” Surf. Coat. Technol., 279, 44–52 (2015).

    CAS  Google Scholar 

  85. S. Jason, V. Sluytman, S. Kramer, V. K. Tolpygo, and C.G. Levi, “Microstructure evolution of ZrO2–YbTaO4 thermal barrier coatings,” Acta Mater., 96, 133–142 (2015).

    Google Scholar 

  86. F. Yang, X. Zhao, and P. Xiao, “The effects of temperature and composition on the thermal conductivities of [(ZrO2)1–x(CeO2) x]0.92(Y2O3)0.08 (0 ≦ x ≦ 1) solid solutions,” Acta Mater., 60, 914–922 (2012).

    CAS  Google Scholar 

  87. P. Sokolowski, S. Kozerski, L. Pawlowski, and A. Ambroziak, “The key process parameters influencing formation of columnar microstructure in suspension plasma sprayed zirconia coatings,” Surf. Coat. Technol., 260, 97–106 (2014).

    CAS  Google Scholar 

  88. U. Schulz, K. Fritscher, and M. Peters, “EB-PVD Y2O3–and CeO2/Y2O3-stabilized zirconia thermal barrier coatings—crystal habit and phase composition,” Surf. Coat. Technol., 82, 259–269 (1996).

    CAS  Google Scholar 

  89. G.D. Girolamo, C. Blasi, M. Schioppa, and L. Tapfer, “Structure and thermal properties of heat-treated plasma sprayed ceria–yttria co-stabilized zirconia coatings,” Ceram. Int., 36, 961–968 (2010).

    Google Scholar 

  90. B. Cortese, D. Caschera, T. Caro, and G.M. Ingo, “Micro-chemical and -morphological features of heat-treated plasma sprayed zirconia-based thermal barrier coatings,” Thin Solid Films, 549, No. 31, 321–329 (2013).

  91. T. Chen, S. Tekeli, R.P. Dillon, and M.L. Mecartney, “Phase stability, microstructural evolution and room temperature mechanical properties of TiO2 doped 8 mol.% Y2O3 stabilized ZrO2 (8Y-CSZ),” Ceram. Int., 34, No. 2, 365–370 (2008).

    CAS  Google Scholar 

  92. Zhao Meng and Pan Wei, “Effect of lattice defects on thermal conductivity of Ti-doped, Y2O3-stabilized ZrO2,” Acta Mater., 61, 5496–5503 (2013).

  93. L. Jin, G. Liu, P. Li, H. Zhou, C. Wang, and G. Zhou, “Adhesion strength and thermal shock properties of nanostructured 5La3TiYSZ, 8LaYSZ and 8CeYSZ coatings prepared by atmospheric plasma spraying,” Ceram. Int., 41, No. 9, Part B, 12099–12106 (2015).

  94. Y. Liu, Y.F. Gao, S.Y. Tao, X.M. Zhou, and H. J. Luo, “La2O3-modified YSZ coatings: High-temperature stability and improved thermal barrier properties,” Surf. Coat. Technol., 203, 1014–1019 (2009).

    CAS  Google Scholar 

  95. M. Matsumoto, T. Kato, N. Yamaguchi, D. Yokoe, and H. Matsubara, “Thermal conductivity and thermal cycle life of La2O3 and HfO2 doped ZrO2–Y2O3 coatings produced by EB-PVD,” Surf. Coat. Technol., 203, 2835–2840 (2009).

    CAS  Google Scholar 

  96. A. Rauf, Q. Yu, L. Jin, and C. Zhou, “Microstructure and thermal properties of nanostructured lanthana-doped yttria-stabilized zirconia thermal barrier coatings by air plasma spraying,” Scr. Mater., 66, 109–11 (2012).

    CAS  Google Scholar 

  97. H. Liu, S. Li, Q. Li, and Y. Li, “Investigation on the phase stability, sintering and thermal conductivity of Sc2O3–Y2O3–ZrO2 for thermal barrier coating application,” Mater. Des., 31, 2972–2977 (2010).

    CAS  Google Scholar 

  98. W. Fan, Z.Z. Wang, Y. Bai, J.W. Che, R.J. Wang, F. Ma, W.Z. Tao, and G.Y. Liang, “Improved properties of scandia and yttria co-doped zirconia as a potential thermal barrier material for high temperature applications,” J. Eur. Ceram. Soc., 38, No. 13, 4502–4511 (2018).

    CAS  Google Scholar 

  99. M.R. Loghman-Estarki, R.S. Razavi, H. Edris, S.R. Bakhshi, M. Nejati, and H. Jamali, “Comparison of hot corrosion behavior of nanostructured ScYSZ and YSZ thermal barrier coatings,” Ceram. Int., 42, 7432–7439 (2016).

    CAS  Google Scholar 

  100. M.R. Loghman-Estarki, M. Hajizadeh-Oghaz, H. Edris, R.S. Razavi, A. Ghasemi, Z. Valefi, and H. Jamali, “Plasma-sprayed nanostructured scandia-yttria and ceria-yttria codoped zirconia coatings: microstructure, bonding strength and thermal insulation properties,” Ceram. Int., 44, No. 11, 12042–12047 (2018).

  101. Yu.A. Tamarin and E.B. Kachanov, “Properties of electron-beam thermal barrier coatings,” in: New Processes and Reliability of Gas Turbine Engines [in Russian], Izd. Tsentr. Inst. Motorostr. Baranova, Moscow (2008), Issue 7, pp. 125–144.

  102. K.Yu. Yakovchuk, “Thermal conductivity and thermal fatigue strength of condensation thermal barrier coatings,” Sovr. Elektrometall., No. 4(117), 25–31 (2014).

  103. S. Ghosh, “Thermal barrier ceramic coatings. A review,” Adv. Ceram. Proc., 11–132 (2015), https://www.intechopen.com/books/advanced-ceramic-processing/thermal-barrier-ceramic-coatings-areview; https://doi.org/10.5772/61346.

  104. S. Gong, K.V. Every, H. Wang, and R.W. Trice, “Microstructure and thermal properties of inflight rare-earth doped thermal barriers prepared by suspension plasma spray,” J. Eur. Ceram. Soc., 34, 1243–1253 (2014).

    CAS  Google Scholar 

  105. S.M. Lakiza, Ya.S. Tishchenko, and L.M. Lopato, “The Al2O3–Zr(Hf)O2–La2O3 phase diagrams as a scientific basis for developing new thermal barrier coatings,” Powder Metall. Met. Ceram., 53, No. 5–6, 323–329 (2014).

  106. D.R. Clarke and C.G. Levi, “Materials design for the next generation thermal barrier coatings,” Annu. Rev. Mater., 33, 383–417 (2003); https://doi.org/10.1146/annurev.matsci.33.011403.113718.

    Article  CAS  Google Scholar 

  107. D. Zhu, O. Robert, and A. Miller, “Thermal conductivity and sintering behavior of advanced thermal barrier coatings,” in: Hau-Tay Lin and Mrityunjay Singh (eds.), 26th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: B: Ceramic Engineering and Science Proceedings, Chapter 51 (2002), Vol. 23, pp. 457–468; https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20020061255.pdf.

  108. D. Zhu, “Low conductivity thermal barrier coatings,” NASA/TM—2005-213857 (2005), https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20050216393.pdf.

  109. M.J. Kelly, D.E. Wolfe, J. Singh, J. Eldridge, D. Zhu, and R. Miller, “Thermal barrier coatings design with increased reflectivity and lower thermal conductivity for high-temperature turbine applications,” Int. J. Appl. Ceram. Technol., 3(2), 81–93 (2006); https://doi.org/10.1111/j.1744-7402.2006.02073.x.

    Article  CAS  Google Scholar 

  110. D. Zhu and R.A. Miller, “Development of advanced low conductivity thermal barrier coatings,” Int. J. Appl. Ceram. Technol., 1, 86–94 (2004).

    CAS  Google Scholar 

  111. D. Zhu, Y.L. Chen, and R.A. Miller, “Defect clustering and nanophase structure characterization of multicomponent rare earth-oxide-doped zirconia-yttria thermal barrier coatings,” NASA/TM—2004-212480 (2004); https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20040015329.pdf.

  112. M.P. Schmitt, A.K. Rai, R. Bhattacharya, D. Zhu, and D.E. Wolfe, “Multilayer thermal barrier coating (TBC) architectures utilizing rare earth doped YSZ and rare earth pyrochlores,” Surf. Coat. Technol., 251, 56–63 (2014).

    CAS  Google Scholar 

  113. A.K. Rai, M.P. Schmitt, R.S. Bhattacharya, D. Zhu, and D.E. Wolfe, “Thermal conductivity and stability of multilayered thermal barrier coatings under high temperature annealing conditions,” J. Eur. Ceram. Soc., 35, 1605–1612 (2015).

    CAS  Google Scholar 

  114. D.R. Clarke and S.R. Phillpot, “Thermal barrier coating materials,” Mater. Today, 8, 22–29 (2005).

    CAS  Google Scholar 

  115. T. Sadowski and P. Golewski, Protective Thermal Barrier Coatings, Springer Briefs in Computational Mechanics (2016), https://doi.org/10.1007/978-981-10-0919-8_2.

  116. Honglong Wang Emily Tarwater, Xinxing Zhang, and Zhizhi Sheng, “Pyrochlore lanthanide zirconates for thermal barrier coatings,” Ceram. Trans., 252, 417–424 (2015).

  117. E.V. Dudnik, S.M. Lakiza, M.I. Grechanyuk, A.K. Ruban, V.P. Redko, M.S. Glabay, and A.B. Myloserdov, “The Gd2Zr2O7-based materials for thermal barrier coating,” Powder Metall. Met. Ceram., 57, No. 5–6, 301–315 (2018).

    CAS  Google Scholar 

  118. M.G. Gok and G. Goller, “State of the art of gadolinium zirconate based thermal barrier coatings: design, processing and characterization,” in: Coatings Technology, IntechOpen (2019), pp. 1–23, https://doi.org/10.5772/intechopen.85451.

  119. R.D. Shannon, “Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., A32, 751–767 (1976).

    CAS  Google Scholar 

  120. L. Pawlowski, “Strategic oxides for thermal spraying: problems of availability and evolution of prices,” Surf. Coat. Technol., 220, 14–19 (2013).

    CAS  Google Scholar 

  121. K. Jiang, S. Liu, and X. Wang, “Low–thermal–conductivity and high–toughness CeO2–Gd2O3 co-stabilized zirconia ceramic for potential thermal barrier coating applications,” J. Eur. Ceram. Soc., 38, No. 11, 3986–3993 (2018).

    CAS  Google Scholar 

  122. V.V. Okovyty, “Choice of oxides for stabilizing zirconium oxide to produce thermal barrier coatings,” Nauka Tekh., No. 5, 26–32 (2015).

  123. M.N. Rahaman, J.R. Gross, R.E. Dutton, and H. Wang, “Phase stability, sintering, and thermal conductivity of plasma-sprayed ZrO2–Gd2O3 compositions for potential thermal barrier coating applications,” Acta Mater., 54, 1615–1621 (2006).

    CAS  Google Scholar 

  124. R.M. Leckie, S. Krämera, M. Rühle, and C.G. Levi, “Thermochemical compatibility between alumina and ZrO2–GdO3/2 thermal barrier coatings,” Acta Mater., 53, 3281–3292 (2005).

    CAS  Google Scholar 

  125. M. Gupta, N. Curry, P. Nylén, N. Markesan, and R. Vaßen, “Design of next generation thermal barrier coatings—experiments and modelling,” Surf. Coat. Technol., 220, 20–26 (2013).

    CAS  Google Scholar 

  126. A.U. Munawar, U. Schulz, G. Cerri, and H. Lau, “Microstructure and cyclic lifetime of Gd and Dycontaining EB-PVD TBCs deposited as single and double-layer on various bond coats,” Surf. Coat. Technol., 245, 92–101 (2014).

    CAS  Google Scholar 

  127. J. Feng, X. Ren, X. Wang, R. Zhoub, and W. Pana, “Thermal conductivity of ytterbia-stabilized zirconia,” Scr. Mater., 66, 41–44 (2012).

    CAS  Google Scholar 

  128. X. Song, M. Xie, R. Mu, F. Zhou, G. Jia, and S. An, “Influence of the partial substitution of Y2O3 with Ln2O3 (Ln = Nd, Sm, Gd) on the phase structure and thermophysical properties of ZrO2–Nb2O5–Y2O3 ceramics,” Acta Mater., 59, 3895–3902 (2011).

    CAS  Google Scholar 

  129. J.A. Krogstad, M. Lepple, and C.G. Levi, “Opportunities for improved TBC durability in the CeO2–TiO2–ZrO2 system,” Surf. Coat. Technol., 221, 44–52 (2013).

    CAS  Google Scholar 

  130. J. Wang, J. Sun, Q. Jing, B. Liu, H. Zhang, Y. Yu, J. Yuan, S. Dong, X. Zhou, and X. Cao, “Phase stability and thermo-physical properties of ZrO2–CeO2–TiO2 ceramics for thermal barrier coatings,” J. Eur. Ceram. Soc., 38, No 7, 2841–2850 (2018).

    CAS  Google Scholar 

  131. J. Fenech, M. Dalbin, A. Barnabe, J. P. Bonino, and F. Ansart, “Sol–gel processing and characterization of (RE-Y)-zirconia powders for thermal barrier coatings,” Powder Technol., 208, 480–487 (2011).

    CAS  Google Scholar 

  132. L. Pawłowski, “Strategic oxides for thermal spraying: problems of availability and evolution of prices,” Surf. Coat. Technol., 220, 14–19 (2013).

    Google Scholar 

  133. L. Sun, H. Guon, H. Peng, Sh. Gong, and H. Xu, “Influence of partial substitution of Sc2O3 with Gd2O3 on the phase stability and thermal conductivity of Sc2O3-doped ZrO2,” Ceram. Int., 39, 3447–3451 (2013).

    CAS  Google Scholar 

  134. M.B. Ponnuchamy and A.S. Gandhi, “Phase and fracture toughness evolution during isothermal annealing of spark plasma sintered zirconia co-doped with Yb, Gd and Nd oxides,” J. Eur. Ceram. Soc., 35, 1879– 1887 (2015).

    CAS  Google Scholar 

  135. L. Guo, Ch. Zhang, L. Xu, M. Li, Q. Wang, F. Ye, Ch. Dand, and V. Ji, “Effects of TiO2 doping on the defect chemistry and thermo-physical properties of Yb2O3 stabilized ZrO2,” J. Eur. Ceram. Soc., 37, No. 13, 4163–4169 (2017).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E.V. Dudnik.

Additional information

Translated from Poroshkova Metallurgiya, Vol. 59, Nos. 3–4 (532), pp. 80–108, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudnik, E., Lakiza, S., Hrechanyuk, I. et al. Thermal Barrier Coatings Based on ZrO2 Solid Solutions. Powder Metall Met Ceram 59, 179–200 (2020). https://doi.org/10.1007/s11106-020-00151-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-020-00151-8

Keywords

Navigation