Skip to main content
Log in

Thermodynamic Assessment of the Mg–Ni–Si System

  • PHYSICOCHEMICAL MATERIALS RESEARCH
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The thermodynamic assessment of the Mg–Ni–Si system has been developed in the framework of the CALPHAD method. The critical review of the literature data has been provided. A set of selfconsistent thermodynamic parameters for the phases in this ternary system is obtained using the phase diagram data available in the literature. The excess Gibbs energy term of solution phases is described using the Redlich–Kister polynomial. The sublattice model is used to describe the MgNi2 intermetallic phase having homogeneity range in the ternary system. Ternary intermetallic compounds are modelled as line compounds. Isothermal sections and liquidus surface, as well as the coordinates of the invariant reactions, are calculated. The calculated results are in satisfactory agreement with the experimental data. The calculated liquidus surface is extremely complex and contains 38 invariant reactions including 8 degenerated reactions and 10 invariant maxima. Most of the presented invariant reactions must be considered as approximate. The τ3 and τ5 phases melt congruently at 1544 and 1487 K, respectively. The τ4 forms via the peritectoid τ5 + NiSi + βNi2Si ↔ τ4 reaction at a temperature of 1193 K. According to our calculations, τ1 and τ8 melt at 1359 K (the L + τ5 ↔ τ1 reaction) and 1267 K (the L + τ1 ↔ τ8 reaction). The τ2 and τ6 are formed via the peritectic reactions at 1317 K (the L + τ3 + MgNi2 ↔ τ2 reaction) and at 1229 K (the L + τ5 + Mg2Si ↔ τ6 reaction), and the τ7 is formed via peritectoid Mg2Si + τ1 + τ5 ↔ τ7 reaction at 1279 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. G. Li, H.S. Gill, and R.A. Varin, “Magnesium silicide intermetallic alloys,” Metall. Trans. A., 24, 2383– 2391 (1993).

    Article  Google Scholar 

  2. G.H. Li and R.A. Varin, “Effect of Ni content on the microstructure, microhardness and fracture toughness of magnesium silicide ternary alloy,” Mater. Sci. Eng. A, 183, 145–155 (1994).

    Article  CAS  Google Scholar 

  3. R.A. Varin and G.-H. Li, “Microstructure and mechanical properties of Mg33–xSixNi67 intermetallic composite alloys,” Mater. Sci. Engineering A, 192–193, 59–68 (1995).

    Article  Google Scholar 

  4. Y.K. Song and R.A. Varin, “Indentation microcracking and toughness of newly discovered ternary intermetallic phases in the Ni–Si–Mg system,” Intermetallics, 6, 379–393 (1998).

    Article  CAS  Google Scholar 

  5. W. Buchholz and H.-U. Schuster, “Intermetallic phases with B35-strtucture and relationship to LiFe6Ge6,” Z. Anorg. Allg. Chem., 482, 40–48 (1981).

    Article  CAS  Google Scholar 

  6. G. Hofer and H.H. Stadelmaier, “Cobalt-, Nickel- and Copper-Phases of the MnCu2Al-Type,” Monatsheft. Chemie,” 98, 408–411 (1967).

    Article  CAS  Google Scholar 

  7. D. Noréus, L. Eriksson, L. Göthe, P.E. and Werner, “Structure determination of Mg2SiNi3,” J. Less Comm. Metals, 107, 345–349 (1985).

  8. Y.K. Song and R.A. Varin, “New intermetallic phases in the Ni–Si–Mg ternary system,” Intermetallics, 6, 43–59 (1998).

    Article  CAS  Google Scholar 

  9. Y.K. Song and R.A. Varin, “Phase equilibria and intermetallic phases in the Ni–Si–Mg ternary system,” Metall. Mat. Trans. A, 32, 5–18 (2001).

    Article  Google Scholar 

  10. M.H.G. Jacobs and P.J. Spencer, “A critical thermodynamic evaluation of the system Mg–Ni,” Calphad, 22, 513–525 (1998).

    Article  CAS  Google Scholar 

  11. D. Kevorkov, R. Schmid-Fetzer, and F. Zhang, “Phase equilibria and thermodynamics of the Mg–Si–Li system and remodeling of the Mg–Si system,” J. Phase Equil. Diff., 25, 140–151 (2004).

    Article  CAS  Google Scholar 

  12. J.C. Schuster and Y. Du, “Experimental investigation and thermodynamic modeling of the Cr–Ni–Si system,” Metall. Mat. Trans. A, 31, 1795–1803 (2000).

    Article  Google Scholar 

  13. P. Villars and L.D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed., ASM International, Metals Park, Ohio (1991).

    Google Scholar 

  14. T.B. Massalski and H. Okamoto (Eds.), Binary Alloy Phase Diagrams, ASM International, Materials Park, Ohio (1990).

    Google Scholar 

  15. L. Wang, D. Zhao, J. Lu, W. Liu, Q. Zhou, “Solid-state synthesis and magnetic properties of rhombohedral phase Mg2SiNi3,” Int. J. Mater. Res., 10, No. 9, 177–180 (2018).

    Article  Google Scholar 

  16. K.L. Holman, E. Morosan, P.A. Casey, L. Li, N.P. Ong, T. Klimczuk, C. Felser, R.J. Cava, “Crystal structure and physical properties of Mg6Cu16Si7-type M6Ni16Si7, for M = Mg, Sc, Ti, Nb, and Ta,” Mater. Res. Bull., 43, 9–15 (2008).

    Article  CAS  Google Scholar 

  17. A.T. Dinsdale, “SGTE data for pure elements,” Calphad, 15, 317–425 (1991).

    Article  CAS  Google Scholar 

  18. O. Dovbenko, L. Dreval, Y. Du, Y. Liu, S. Liu, S. Iljenko, G. Effenberg, “Critical evaluation of ternary phase diagram data: Important considerations in the scrutiny of the correctness, coherence, and interpretation,” Calphad, 68 (2020).

  19. F. Laves and H. Witte, “Influence of valence electron to crystal structure of ternary magnesium alloys,” Metallwirtsch, 15, 840–842 (1936).

    CAS  Google Scholar 

  20. F. Laves, “Crystallography of the alloys,” Naturwissensch, 27, 65–73 (1939).

    Article  CAS  Google Scholar 

  21. M.Y. Teslyuk, Intermetallic Compounds with Structure of Laves Phases [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  22. Y. Imai, H. Sugawara, Y. Mori, S. Nakamura, A. Yamamoto, K.I. Takarabe, “Energetic consideration of compounds at Mg2Si–Ni electrode interlayer produced by spark-plasma sintering,” Jpn. J. Appl. Phys.,56, 05DC03 (2017).

    Article  Google Scholar 

  23. G. Inden, “Determination of chemical and magnetic interchange energies in B.C.C. alloys. III. Application to ferromagnetic alloys,” Z. Metallkd., 68, 529–534 (1977).

    CAS  Google Scholar 

  24. M. Hillert and M. Jarl, “A model for alloying in ferromagnetic metals,” Calphad, 2, 227–238 (1978).

    Article  CAS  Google Scholar 

  25. N. Saunders and A.P. Miodownik, Pergamon Materials Series, CALPHAD: Calculation of Phase Diagrams: A Comprehensive Guide, Vol. 1, Pergamon, New York, London (1998), p. 496.

    Google Scholar 

  26. B. Sundman and J. Ågren, “A regular solution model for phases with several components and sublattices, suitable for computer applications,” J. Phys. Chem. Solids., 42, 297–301 (1981).

    Article  CAS  Google Scholar 

  27. B. Sundman, B. Jansson, and J.-O. Andersson, “The Thermo-Calc databank system,” Calphad, 9, 153–190 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from National Natural Science Foundation of China (Grant no. 51820105001) is acknowledged. Both Dr. Oleksandr Dovbenko and Dr. Liya Dreval thank the grant from Department of International Cooperation and Exchanges of Central South University, China for their visit to Central South University from September 1, 2018 to November 30, 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinping Zeng.

Additional information

Published in Poroshkova Metallurgiya, Vol. 59, Nos. 3–4 (532), pp. 120–137, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y., Dreval, L., Dovbenko, O. et al. Thermodynamic Assessment of the Mg–Ni–Si System. Powder Metall Met Ceram 59, 209–223 (2020). https://doi.org/10.1007/s11106-020-00153-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-020-00153-6

Keywords

Navigation