Skip to main content

Advertisement

Log in

Biogeography, phylogenetic relationships and morphological analyses of the South American genus Mutisia L.f. (Asteraceae) shows early connections of two disjunct biodiversity hotspots

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

The Andes is recognized as one of the most biodiverse places on Earth, promoting in its uplift process a series of recent rapid diversification events in different biotic groups like birds, mammals, insects and vascular plants. The uplift of the Andes during the Cenozoic acted as a barrier for many biotic groups, as a scenario for radiation processes due to occupancy of different niches and as a corridor for others. Connections between the Andes and the Atlantic Forest showed intermittent phases along the Cenozoic, affecting the distribution patterns and diversification of different biotic groups. Nowadays, the Andes and the Atlantic Forest are both considered globally relevant biodiversity hotspots. Floristic groups thriving in both hotspots are crucial for a better understanding of their biogeographic history, as well as for informing future conservation actions. Mutisia (Asteraceae), a genus comprising 63 perennial shrubs and vines endemic to South America, shows a marked West-East disjunction: Most species occupy almost the whole Andean chain from Colombia to Patagonia, while a second group encompasses four species distributed in eastern Brazil and the surrounding areas of Paraguay, Uruguay and Argentina. We reconstructed the phylogeny of the genus to assess its possible biogeographic history. We analysed three DNA regions, i.e. the chloroplast trnL-trnF intergenic spacer and the nuclear ribosomal internal and external transcribed spacers, ITS and ETS. Using maximum likelihood and Bayesian inference, gene trees were reconstructed, and a concatenated phylogenetic tree was inferred. Divergence times were estimated by means of BEAST, and the ancestral areas were inferred using BioGeoBEARS. An ancestral reconstruction of morphological traits was also performed, as well as maps representing current richness hotspots within the genus. Phylogenetic analyses strongly support the monophyly of Mutisia, with two well-supported main clades: clade A, with presence of Atlantic-central-northern Andes species, and clade B, with central/southern Andes species. Dating analyses suggest that a main clade separation occurred at the early Miocene, followed by the separation of the Atlantic clade A2 by the late Miocene, and more recent radiations occurred in the central, northern and southern Andes during the Pliocene. Results are in tune with other angiosperm taxa that also underwent rapid radiations, possibly related to environmental and pollinator changes. The biogeographic history of Mutisia is related to morphological adaptations, history and geographic factors acting since the Miocene along the Andes and adjacent areas. Threat assessments and conservation actions for the genus shall include the whole distribution range, including low-range northern and southern Andes species, as well as the distinctive Atlantic Forest clade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abrahamczyk, S., & Renner, S. S. (2015). The temporal build-up of hummingbird/plant mutualisms in North America and temperate South America. BMC Evolutionary Biology, 15(1), 1–12. https://doi.org/10.1186/s12862-015-0388-z.

    Article  CAS  Google Scholar 

  • Achimón, F., Johnson, L. A., Cocucci, A. A., Sérsic, A. N., & Baranzelli, M. C. (2018). Species tree phylogeny, character evolution, and biogeography of the Patagonian genus Anarthrophyllum Benth. (Fabaceae). Organisms, Diversity and Evolution, 18, 71–86.

    Google Scholar 

  • Albert, J. S., Lovejoy, N. R., & Crampton, W. G. R. (2006). Miocene tectonism and the separation of cis- and trans-Andean river basins: evidence from Neotropical fishes. Journal of South American Earth Sciences, 21, 14–27.

    Google Scholar 

  • Antonelli, A., Kissling, W. D., Flantua, S. G. A., Bermúdez, M. A., Mulch, A., Muellner-Riehl, A. N., Kreft, H., Linder, H. P., Badgley, C., Fjeldså, J., Fritz, S. A., Rahbek, C., Herman, F., Hooghiemstra, H., & Hoorn, C. (2018). Geological and climatic influences on mountain biodiversity. Nature Geoscience, 11, 718–725.

    CAS  Google Scholar 

  • Antonelli, A., Nylander, J. A. A., Persson, C., & Sanmartín, I. (2009). Tracing the impact of the Andean uplift on Neotropical plant evolution. PNAS, 106, 9749–9754.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Armijo, R., Lacassin, R., Coudurier-Curveur, A., & Carrizo, D. (2015). Coupled tectonic evolution of Andean orogeny and global climate. Earth Science Reviews, 143, 1–35.

  • Arroyo, M. T. K., Primack, R., & Armesto, J. (1982). Community studies in pollination ecology in the high temperate Andes of Central Chile I: pollination mechanisms and altitudinal variation. American Journal of Botany, 69, 82–97.

  • Baird, K. E., Funk, V. A., Wen, J., & Weeks, A. (2010). Molecular phylogenetic analysis of Leibnitzia Cass. (Asteraceae: Mutisieae: Gerbera-complex), an Asian-North American disjunct genus. Journal of Systematics and Evolution, 48, 161–174.

  • Baldwin, B. G., & Markos, S. (1998). Phylogenetic utility of the external transcribed spacer (ETS) of 18S–26S rDNA: congruence of ETS and ITS trees of Calycadenia (Compositae). Molecular Phylogenetics and Evolution, 10, 449–463.

    CAS  PubMed  Google Scholar 

  • Barnes, J. B., Ehlers, T. A., Insel, N., Mcquarrie, N. & Poulsen, C. J. (2012). Linking orography, climate, and exhumation across the central Andes. Geology, 40, 1135–1138.

  • Barreda, V. D., Palazzesi, L., Tellería, M. C., Katinas, L., Crisci, J. V., Bremer, K., Passalia, M. G., Corsolini, R., Rodríguez Brizuela, R., & Bechis, F. (2010). Eocene Patagonia fossils of the daisy family. Science, 329(5999), 1621.

    CAS  PubMed  Google Scholar 

  • Barreda, V., Palazzesi, L., Katinas, L., Crisci, J., Tellería, M., Bremer, K., Passala, M.G., Bechis, F. & Corsolini, R. (2012). An extinct Eocene taxon of the daisy family (Asteraceae): evolutionary, ecological and biogeographical implications. Annals of Botany, 109, 127–134.

  • Barreda, V. D., Palazzesi, L., Tellería, M. C., Olivero, E. B., Raine, J. I., & Forest, F. (2015). Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica. PNAS, 112, 10989–10994.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barreda, V. D., Palazzesi, L., Tellería, M. C., Olivero, E. B., Raine, J. I., & Forest, F. (2016). Reply to Panero: Robust phylogenetic placement of fossil pollen grains: the case of Asteraceae. PNAS, 113, E412.

    CAS  PubMed  Google Scholar 

  • Bell, M. A., & Lloyd, G. T. (2014). Strap: Stratigraphic Tree Analysis for Palaeontology. https://CRAN.R-project.org/package=strap

  • Bollback, J. P. (2006). SIMMAP: Stochastic character mapping of discrete traits on phylogenies. BMC Bioinformatics, 7, 88. https://doi.org/10.1186/1471-2105-7-88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonifacino, J. M., & Funk, V. A. (2012). Phylogenetics of the Chiliotrichum group (Compositae: Astereae): the story of the fascinating radiation in the paleate Astereae genera from southern South America. Taxon, 61, 180–196.

    Google Scholar 

  • Bowman, D. M. J. S., Moreira-Muñoz, A., Kolden, C. A., Chávez, R. O., Muñoz, A. A., Salinas, F., González-Reyes, Á., Rocco, R., de la Barrera, F., Williamson, G. J., Borchers, N., Cifuentes, L. A., Abatzoglou, J. T., & Johnston, F. H. (2019). Human-environmental drivers and impacts of the globally extreme 2017 Chilean fires. Ambio, 48, 350–362.

    PubMed  Google Scholar 

  • Brown, J. L. (2014). SDMtoolbox: a python-based toolkit for landscape genetic, biogeography, and species distribution model analyses. Methods in Ecology and Evolution, 5, 694–700.

    Google Scholar 

  • Brown, J. L., Bennett, J. R., & French, C. M. (2017). SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 5:e4095. https://doi.org/10.7717/peerj.4095.

  • Brumfield, R. T., & Edwards, S. V. (2007). Evolution into and out of the Andes: a Bayesian analysis of historical diversification in Thamnophilus antshrikes. Evolution, 61, 346–367. https://doi.org/10.1111/j.1558-5646.2007.00039.x.

    Article  CAS  PubMed  Google Scholar 

  • Buzato, S., Sazima, M., & Sazima, I. (2000). Hummingbird-pollinated floras at three Atlantic Forest sites. Biotropica, 32, 824–841.

    Google Scholar 

  • Cabanne, G. S., Campagna, L., Trujillo-Arias, N., Naoki, K., Gómez, I., Miyaki, C. Y., Santos, F. R., Dantas, G. P. M., Aleixo, A., Claramunt, S., Rocha, A., Caparroz, R., Lovette, I. J., & Tubaro, P. L. (2019). Phylogeographic variation within the buff-browed foliage-gleaner (Aves: Furnariidae: Syndactyla rufosuperciliata) supports an Andean-Atlantic forests connection via the Cerrado. Molecular Phylogenetics and Evolution, 133, 198–213.

  • Cabrera, A. (1965). Revisión del género Mutisia (Compositae). Opera Lilloana, 13, 1–227.

    Google Scholar 

  • Carrapa, B., Clementz, M., & Feng, R. (2019). Ecological and hydroclimate responses to strengthening of the Hadley circulation in South America during the late Miocene cooling. PNAS, 116, 9747–9752.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chacón, J., Camargo de Assis, M., Meerow, A. W., & Renner, S. S. (2012). From East Gondwana to Central America: historical biogeography of the Alstroemeriaceae. Journal of Biogeography, 39, 1806–1818.

    Google Scholar 

  • Chaves, J. A., Weir, J. T., & Smith, T. B. (2011). Diversification in Adelomyia hummingbirds follows Andean uplift. Molecular Ecology, 20(21), 4564–4576. https://doi.org/10.1111/j.1365-294X.2011.05304.x.

    Article  PubMed  Google Scholar 

  • Chazot, N., Freitas, A. V. L., De-Silva, D. L., Willmott, K. R., Lamas, G., Mallet, J., et al. (2018). Contrasting patterns of Andean diversification among three diverse clades of Neotropical clearwing butterflies. Ecology and Evolution, 8, 3965–3982.

    PubMed  PubMed Central  Google Scholar 

  • Contreras-Ortiz, N., Atchison, G. W., Hughes, C. E., & Madriñan, S. (2018). Convergent evolution of high elevation plant growth forms and geographically structured variation in Andean Lupinus (Fabaceae). Botanical Journal of the Linnean Society, 187, 118–136.

    Google Scholar 

  • Costa, L. (2003). The historical bridge between the Amazon and the Atlantic Forest of Brazil: a study of molecular phylogeography with small mammals. Journal of Biogeography, 30, 71–86.

    Google Scholar 

  • da Silva Tomadon, L., Dettke, G. A., Galeazzi Caxambu, M., Malfetoni Ferreira, J. I., & do Couto, E. V. (2019). Significance of forest fragments for conservation of endangered vascular plant species in southern Brazil hotspots. Écoscience, 26, 221–235.

    Google Scholar 

  • Damascos, M. A., Barthelemy, D., Ezcurra, C., Martínez, P., & Brion, C. (2008). Phenology, shoot growth, and branching pattern in Mulinum spinosum (Apiaceae), a cushion shrub of the arid Patagonian steppe of Argentina. Journal of Arid Environments, 72, 1977–1988.

    Google Scholar 

  • De la Riva, I., García-París, M., & Parra-Olea, G. (2010). Systematics of Bolivian frogs of the genus Telmatobius (Anura, Ceratophryidae) based on mtDNA sequences. Systematics and Biodiversity, 8, 49–61.

    Google Scholar 

  • Diazgranados, M., & Barber, J. C. (2017). Geography shapes the phylogeny of frailejones (Espeletiinae Cuatrec., Asteraceae): a remarkable example of recent rapid radiation in sky islands. PeerJ, 5(e2968), 1–35.

    Google Scholar 

  • Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214. https://doi.org/10.1186/1471-2148-7-214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehlers, T. A., & Poulsen, C. J. (2009). In fluence of Andean uplift on climate and paleoaltimetry estimates. Earth and Planetary Science Letters, 281, 238–248.

    CAS  Google Scholar 

  • Fiorella, R., Poulsen, C. J., Pillco Zolá, R. S., Jeffery, M. L., & Ehlers, T. A. (2015). Modern and long-term evaporation of central Andes surface waters suggests paleo archives underestimate Neogene elevations. Earth and Planetary Science Letters, 432, 59–72.

    CAS  Google Scholar 

  • Flantua, S. G. A., O'Dea, A., Onstein, R. E., Giraldo, C., & Hooghiemstra, H. (2019). The flickering connectivity system of the north Andean páramos. Journal of Biogeography, 46, 1808–1825.

    Google Scholar 

  • Funk, V. A., Sancho, G., Roque, N. d., Kelloff, C. L., Ventosa-Rodríguez, I., Diazgranados, M., Bonifacino, M, & Chan, R. (2014). A phylogeny of the Gochnatieae: understanding a critically placed tribe in the Compositae. Taxon, 63(4), 859–882.

  • Garzione, C. N., Mcquarrie, N., Perez, N. D., Ehlers, T. A., Beck, S. L., Kar, N., et al. (2017). Tectonic evolution of the Central Andean Plateau and implications for the growth of plateaus. Annual Review of Earth and Planetary Sciences, 45, 529–559.

    CAS  Google Scholar 

  • Gregory-Wodzicki, K. M. (2000). Uplift history of the central and northern Andes: a review. Geological Society of America Bulletin, 112, 1091–1105.

    Google Scholar 

  • Grimmer, F., Dupont, L., Lamy, F., Jung, G., González, C., & Wefer, G. (2018). Early Pliocene vegetation and hydrology changes in western equatorial South America. Climate of the Past, 14, 1739–1754.

    Google Scholar 

  • Grossi, M., Draper, D., Apodaca, M., Vitali, M., Pataro, L., Katinas, L., & Moreno Saiz, J. (2017). The road to 2020 targets and the learnings from the emblematic south American plant genus Nassauvia (Asteraceae). Biodiversity and Conservation, 26, 329–351.

    Google Scholar 

  • Gruenstaeudl, M., Urtubey, E., Jansen, R. K., Samuel, R., Barfuss, M. H. J., & Stuessy, T. F. (2009). Phylogeny of Barnadesioideae (Asteraceae) inferred from DNA sequence data and morphology. Molecular Phylogenetics and Evolution, 51, 572–587.

    CAS  PubMed  Google Scholar 

  • Hazzi, N. A., Sebastián, J., Ortiz-Movliav, C., & Darío, R. (2018). Biogeographic regions and events of isolation and diversification of the endemic biota of the tropical Andes. PNAS, 115(31), 7985–7990.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heibl, C. (2008, Onwards). PHYLOCH: R language tree plotting tools and interfaces to diverse phylogenetic software packages. http://www.christophheibl.de/Rpackages.html

  • Hershkovitz, M. A., Arroyo, M. T. K., Bell, C., & Hinojosa, L. F. (2006). Phylogeny of Chaetanthera (Asteraceae: Mutisieae) reveals both ancient and recent origins of the high elevation lineages. Molecular Phylogenetics and Evolution, 41, 594–605.

    CAS  PubMed  Google Scholar 

  • Hoorn, C., Wesselingh, F. P., Hovikoski, J., & Guerrero, J. (2010a). The development of the Amazonian mega-wetland (Miocene; Brazil, Colombia, Peru, Bolivia). In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia, landscape and species evolution: a look into the past (1st ed., pp. 123–142). Oxford: Blackwell Publishing.

    Google Scholar 

  • Hoorn, C., Wesselingh, F., & Steege, H. (2010b). Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330, 927–931.

    CAS  PubMed  Google Scholar 

  • Hoorn, C., Perrigo, A., & Antonelli, A. (2018). Mountains, climate and biodiversity: An introduction. In C. Hoorn, A. Perrigo, & A. Antonelli (Eds.), Mountains, climate and biodiversity (pp. 1–13). Oxford: Wiley Blackwell.

    Google Scholar 

  • Jara-Arancio, P., Vidal, P. M., & Arroyo, M. T. K. (2018). Phylogenetic reconstruction of the genus Triptilion (Asteraceae, Nassauvieae) based on nuclear and chloroplast DNA sequences. Journal of Systematics and Evolution, 56(2), 120–128. https://doi.org/10.1111/jse.12294

    Article  Google Scholar 

  • Jara-Arancio, P., Vidal, P. M., Panero, J. L., Marticorena, A., Arancio, G., & Arroyo, M. T. K. (2017). Phylogenetic reconstruction of the South American genus Leucheria Lag. (Asteraceae, Nassauvieae) based on nuclear and chloroplast DNA sequences. Plant Systematics and Evolution, 303, 221–232.

    CAS  Google Scholar 

  • Katinas, L., Pruski, J., Sancho, G., & Tellería, M. C. (2008a). The subfamily Mutisioideae (Asteraceae). Botanical Review, 74, 469–716.

    Google Scholar 

  • Katinas, L., Crisci, J. V., Jabaily, R. S., Williams, C., Walker, J., Drew, B., Bonifacino, J. M., & Sytsma, K. J. (2008b). Evolution of secondary heads in Nassauviinae (Asteraceae, Mutisieae). American Journal of Botany, 95, 229–240.

    PubMed  Google Scholar 

  • Katinas, L., Sancho, G., Tellería, M. C., & Crisci, J. V. (2009). Mutisieae sensu stricto (Mutisioideae sensu stricto). In Funk, V., Susanna, A., Stuessy, T. F., & Bayer, R.J. (Eds.) Systematics, Evolution, and Biogeography of Compositae, IAPT editor, chap. 14, pp. 229–248.

  • Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability article fast track. Molecular Biology and Evolution, 30, 772–780.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamb, S. (2016). Cenozoic uplift of the central Andes in northern Chile and Bolivia —reconciling paleoaltimetry with the geological evolution. Canadian Journal of Earth Sciences, 53, 1227–1245.

    CAS  Google Scholar 

  • Ledo, R. M. D., & Colli, G. R. (2017). The historical connections between the Amazon and the Atlantic Forest revisited. Journal of Biogeography, 44, 2551–2563.

    Google Scholar 

  • Luebert, F., & Weigend, M. (2014). Phylogenetic insights into Andean plant diversification. Frontiers in Ecology and Evolution, 2, 1–17.

    Google Scholar 

  • Luebert, F., & Pliscoff, P. (2017). Sinopsis bioclimática y vegetacional de Chile. Editorial Universitaria (2nd ed.). Chile: Santiago.

    Google Scholar 

  • Luebert, F., Wen, J., & Dillon, M. O. (2009). Systematic placement and biogeographical relationships of the monotypic genera Gypothamnium and Oxyphyllum (Asteraceae: Mutisioideae) from the Atacama Desert. Botanical Journal of the Linnean Society, 159, 32–51.

    Google Scholar 

  • Luebert, F., Lörch, M., Acuña, R., Mello-Silva, R., Weigend, M., & Mutke, J. (2020). Clade-specific biogeographic history and climatic niche shifts of the southern Andean-southern Brazilian disjunction in plants. In V. Rull & A. C. Carnaval (Eds.), Neotropical diversification: patterns and processes (pp. 661–682). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-31167-4_24.

    Chapter  Google Scholar 

  • Maddison, W. P., & Maddison, D.R. (2018). Mesquite: a modular system for evolutionary analysis. Version 3.51. http://www.mesquiteproject.org.

  • Madriñán, S., Cortés, A. J., & Richardson, J. E. (2013). Páramo is the world’ s fastest evolving and coolest biodiversity hotspot. Frontiers in Genetics, 4, 1–7.

    Google Scholar 

  • Mansilla, P., Panez Pinto, A., & Ponce-Hille, M. I. (2019). Discursos geopolíticos de desarrollo y reestructuración territorial IIRSA en el eje Mercosur-Chile. Dialogo Andino, 59, 37–54.

    Google Scholar 

  • Mairal, M., Sanmartín, I., & Pellissier, L. (2017). Lineage-specific climatic niche drives the tempo of vicariance in the Rand Flora. Journal of Biogeography, 44(4), 911–923. https://doi.org/10.1111/jbi.12930.

    Article  Google Scholar 

  • Markos, S., & Baldwin, B. G. (2001). Higher-level relationships and major lineages of Lessingia (Compositae, Astereae) based on nuclear rDNA internal and external transcribed spacer (ITS and ETS) sequences. Systematic Botany, 26, 168–183.

    Google Scholar 

  • Marquínez, X., Lohmann, L. G., Salatino, M. L. F., Salatino, A., & González, F. (2009). Generic relationships and dating of lineages in Winteraceae based on nuclear (ITS) and plastid (rpS16 and psbA-trnH) sequence data. Molecular Phylogenetics and Evolution, 53(2), 435–449. https://doi.org/10.1016/j.ympev.2009.07.001.

    Article  CAS  PubMed  Google Scholar 

  • Martínez, C., Jaramillo, C., Correa-Metrío, A., Crepet, W., Moreno, J., Aliaga, A., et al. (2020). Neogene precipitation, vegetation and elevation history of the Central Andean Plateau. Science Advances, in press.

    Google Scholar 

  • Matzke, N. J. (2013). Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Frontiers of Biogeography, 5, 242–248. http://escholarship.org/uc/item/44j7n141.

    Google Scholar 

  • Matzke, N. J. (2014). Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Systematic Biology, 63, 951–970.

    PubMed  Google Scholar 

  • McGuire, J. A., Witt, C. C., Remsen Jr., J. V., Corl, A., Rabosky, D. L., Altshuler, D. L., & Dudley, R. (2014). Molecular phylogenetics and the diversification of hummingbirds. Current Biology, 24(8), 910–916. https://doi.org/10.1016/j.cub.2014.03.016.

    Article  CAS  PubMed  Google Scholar 

  • Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES science gateway for inference of large phylogenetic trees. Gateway Computing IEEExplore. https://doi.org/10.1109/GCE.2010.5676129.

  • Mittermeier, R. A., Turner, W. R., & Larsen, F. W. (2011). Global biodiversity conservation: the critical role of hotspots. In F. E. Zachos & J. C. Habel (Eds.), Biodiversity hotspots: distribution and protection of conservation priority areas (pp. 3–22). Berlin Heidelberg: Springer.

    Google Scholar 

  • Molotoks, A., Kuhnert, M., Dawson, T., & Smith, P. (2017). Global hotspots of conflict risk between food security and biodiversity conservation. Land, 67, 1–15.

    Google Scholar 

  • Monge, M. (2011). As tribos Barnadesieae e Mutisieae s.l. (Asteraceae) no estado de São Paulo, Brasil. Dissertação de Mestrado, Universidade Estadual de Campinas, pp. 1–227.

  • Monge, M., & Semir, J. (2020). Mutisia in Flora do Brasil 2020 em construção. Jardim Botânico do Rio de Janeiro. Resource Document: http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB27298

  • Moreira-Muñoz, A. (2011). Plant geography of Chile. Dordrecht: Springer Netherlands.

    Google Scholar 

  • Moreira-Muñoz, A. (2014). Central Chile Ecoregion. In C. Hobohm (Ed.), Endemism in Vascular Plants (pp. 221–233). Dordrecht: Springer.

    Google Scholar 

  • Moreira-Muñoz, A., Morales, V., & Muñoz-Schick, M. (2012). Actualización sistemática y distribución geográfica de Mutisioideae (Asteraceae) de Chile. Gayana Botánica, 69, 9–29.

    Google Scholar 

  • Nicola, M. V., Johnson, L. A., & Pozner, R. (2019). Molecular phylogenetics and evolution unraveling patterns and processes of diversification in the south Andean- Patagonian Nassauvia subgenus Strongyloma (Asteraceae, Nassauvieae). Molecular Phylogenetics and Evolution, 136, 164–182.

    PubMed  Google Scholar 

  • Oliveira-Filho, A. T., Jarenkow, J. A., & Nogueira Rodal, M. J. (2006). Floristic relationships of seasonally dry forests of eastern South America based on tree species distribution patterns. In Pennington, T. R., Lewis, G. P. & ratter J. A. (Eds.) Neotropical savannas and dry forests: Diversity, biogeography, and conservation. CRC press, pp. 151-184.

  • Ortiz, S., Bonifacino, J. M., Crisci, J. V, Funk, V. A., Hansen, H. V, Hind, D. J. N., et al. (2009). The basal grade of Compositae: Mutisieae (sensu Cabrera) and Carduoideae. In V. A. Funk, A. Sussana, T. F. Stuessy, & R. Bayer (Eds.), Systematics, Evolution and Biogeography of Compositae (1st ed., pp. 193–213).

  • Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401, 877–884.

    CAS  PubMed  Google Scholar 

  • Palazzesi, L., Gottschling, M., Barreda, V., & Weigend, M. (2012). First Miocene fossils of Vivianiaceae shed new light on phylogeny, divergence times, and historical biogeography of Geraniales. Biological Journal of the Linnean Society, 107(1), 67–85. https://doi.org/10.1111/j.1095-8312.2012.01910.x.

    Article  Google Scholar 

  • Panero, J. L. (2016). Phylogenetic uncertainty and fossil calibration of Asteraceae chronograms. PNAS, 113, E411.

    CAS  PubMed  Google Scholar 

  • Panero, J. L., & Crozier, B. S. (2016). Molecular phylogenetics and evolution macroevolutionary dynamics in the early diversification of Asteraceae. Molecular Phylogenetics and Evolution, 99, 116–132.

    PubMed  Google Scholar 

  • Panero, J. L., & Funk, V. A. (2008). The value of sampling anomalous taxa in phylogenetic studies: major clades of the Asteraceae revealed. Molecular Phylogenetics and Evolution, 47, 757–782.

    CAS  PubMed  Google Scholar 

  • Paradis, E., Claude, J., & Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289–290.

    CAS  PubMed  Google Scholar 

  • Paradis, E., & Schliep, K. (2019). Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526–528.

    CAS  PubMed  Google Scholar 

  • Pasini, E., Funk, V. A., de Souza-Chies, T. T., & Miotto, S. T. S. (2016). New insights into the phylogeny and biogeography of the Gerbera-complex (Asteraceae: Mutisieae). Taxon, 65, 547–562.

    Google Scholar 

  • Pelser, P. B., Kennedy, A. H., Tepe, E. J., Shidler, J. B., Nordenstam, B., Kadereit, J. W., & Watson, L. E. (2010). Patterns and causes of incongruence between plastid and nuclear Senecioneae (Asteraceae) phylogenies. American Journal of Botany, 97, 856–873.

    CAS  PubMed  Google Scholar 

  • Pennell, M. W., Eastman, J. M., Slater, G. J., Brown, J. W., Uyeda, J. C., Fitzjohn, R. G., Alfaro, M. E., & Harmon, L. J. (2014). Geiger 2.0: and expanded suite of methods for fitting macroevolutionary models to phylogenetics trees. Bioinformatics, 30, 2216–2218.

    CAS  PubMed  Google Scholar 

  • Pokorny, L., Riina, R., Mairal, M., Meseguer, A. S., Culshaw, V., Cendoya, J., Serrano, M., Carbajal, R., Ortiz, S., Heuertz, M., & Sanmartín, I. (2015). Living on the edge: timing of Rand Flora disjunctions congruent with ongoing aridification in Africa. Frontiers in Genetics, 6, 154. https://doi.org/10.3389/fgene.2015.00154.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pouchon, C., Fernández, A., Nassar, J. M., Boyer, F., Aubert, S., Lavergne, S., & Mavárez, J. (2018). Phylogenomic analysis of the explosive adaptive radiation of the Espeletia complex (Asteraceae) in the Tropical Andes. Systematic Biology, 67(6), 1041–1060.

    CAS  PubMed  Google Scholar 

  • Prates, I., Melo-Sampaio, P. R., de Oliveira Drummond, L., Teixeira Jr., M., Trefaut Rodrigues, M., & Carnaval, A. C. (2017). Biogeographic links between southern Atlantic Forest and western South America: rediscovery, re-description, and phylogenetic relationships of two rare montane anole lizards from Brazil. Molecular Phylogenetics and Evolution, 113, 49–58.

    PubMed  Google Scholar 

  • Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior summarization in Bayesian phylogenetics using tracer 1.7. Systematic Biology, 67, 901–904.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ree, R., & Smith, S. (2008). Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology, 57, 4–14.

    PubMed  Google Scholar 

  • Ree, R. H., & Sanmartín, I. (2018). Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection. Journal of Biogeography, 45, 741–749.

    Google Scholar 

  • Reginato, M., & Michelangeli, F. A. (2016). Diversity and constraints in the floral morphological evolution of Leandra s. str. (Melastomataceae). Annals of Botany, 118, 445–458.

    PubMed  PubMed Central  Google Scholar 

  • Revell, L. J. (2012). Phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217–223.

    Google Scholar 

  • Revell, L. J., Harmon, L. J., & Collar, D. C. (2008). Phylogenetic signal, evolutionary process, and rate. Systematic Biology, 57, 591–601.

    PubMed  Google Scholar 

  • Rohrmann, A., Sachse, D., Mulch, A., Pingel, H., Tofelde, S., Alonso, R. N., & Strecker, M. R. (2016). Miocene orographic uplift forces rapid hydrological change in the southern central Andes. Scientific Reports, 6, 1–7.

    Google Scholar 

  • Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.

    PubMed  PubMed Central  Google Scholar 

  • Sancho, G., Katinas, L., Viera Barreto, J. N., Moreira-Muñoz, A., & Luebert, F. (2018). Phylogenetic relationships and generic reassessment of Proustia and allies (Compositae: Nassauvieae). Taxon, 67, 113–129.

    Google Scholar 

  • Särkinen, T., Pennington, R. T., Lavin, M., Simon, M. F., & Hughes, C. E. (2012). Evolutionary islands in the Andes: persistence and isolation explain high endemism in Andean dry tropical forests. Journal of Biogeography, 39, 884–900.

    Google Scholar 

  • Scherson, R. A., Vidal, R., & Sanderson, M. J. (2008). Phylogeny, biogeography, and rates of diversification of New World Astragalus (Leguminosae) with an emphasis on South American radiations. American Journal of Botany, 95, 1030–1039.

    PubMed  Google Scholar 

  • Serrano-Serrano, M. L., Rolland, J., Clark, J. L., Salamin, N., & Perret, M. (2017). Hummingbird pollination and the diversification of angiosperms: and old and successful association in Gesneriaceae. Proceedings of the Royal Society B, 284, 20162816.

    PubMed  PubMed Central  Google Scholar 

  • Simpson, B. B. (2014). Whence the flora of southern South America? Biases may distort our conclusions. In W. D. Stevens, O. M. Montiel, & P. H. Raven (Eds.), Paleobotany and biogeography: a Festschrift for Alan Graham in his 80th year (pp. 338–366). St. Louis: Missouri Botanical Garden Press.

    Google Scholar 

  • Simpson, B. B., Arroyo, M. T. K., Sipe, S., Dias de Moraes, M., & McDill, J. (2009). Phylogeny and evolution of Perezia (Asteraceae: Mutisieae: Nassauviinae). Journal of Systematics and Evolution, 47, 431–443.

    Google Scholar 

  • Sleumer, H. O. (1980). Flacourtiaceae. Flora Neotropica (Vol. 22). New York: New York Botanical Garden Press.

    Google Scholar 

  • Stamatakis, A. (2014). RaxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strelin, M. M., Arroyo, J. I., Fliesswasser, S., & Ackermann, M. (2017). Diversification of Caiophora (Loasaceae subfam. Loasoideae) during the uplift of the central Andes. Organisms, Diversity and Evolution, 17, 29–41.

    Google Scholar 

  • Ströher, P. R., Meyer, A. L. S., Zarza, E., Tsai, W. L. E., McCormack, J. E., & Pie, M. R. (2019). Phylogeography of ants from the Brazilian Atlantic Forest. Organisms, Diversity and Evolution, 19, 435–445.

    Google Scholar 

  • Stuessy, T. F., Sang, T., & DeVore, M. L. (1996). Phylogeny and biogeography of the subfamily Barnadesioideae with implications for early evolution of the Compositae. In D. J. N. Hind & H. J. Beentje (Eds.), Compositae: Systematics, Proceedings of the International Compositae Conference, Kew, 1994, vol (Vol. 1, pp. 463–490). Kew: Royal Botanic Gardens.

  • Taberlet, P., Gielly, L., Pautou, G., & Bouvet, J. (1991). Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology, 17, 1105–1109.

    CAS  PubMed  Google Scholar 

  • Tank, D. C., & Donoghue, M. J. (2010). Phylogeny and phylogenetic nomenclature of the Campanulidae based on an expanded sample of genes and taxa. Systematic Botany, 35, 425–441.

    Google Scholar 

  • Trujillo-Arias, N., Dantas, G. P. M., Arbeláez-Cortés, E., Naoki, K., Gómez, M. I., Santos, F. R., Miyaki, C. Y., Aleixo, A., Tubaro, P. L., & Cabanne, G. S. (2017). The niche and phylogeography of a passerine reveal the history of biological diversification between the Andean and the Atlantic forests. Molecular Phylogenetics and Evolution, 112, 107–121.

  • Trujillo-Arias, N., Calderón, L., Santos, F. R., Miyaki, C. Y., Aleixo, A., Witt, C. C., Tubaro, P. L., & Cabanne, G. S. (2018). Forest corridors between the central Andes and the southern Atlantic Forest enabled dispersal and peripatric diversification without niche divergence in a passerine. Molecular Phylogenetics and Evolution, 128, 221–232.

    PubMed  Google Scholar 

  • Ulloa Ulloa, C. & Jørgensen, P. (1996). A new species of Mutisia (Compositae-Mutisieae) from Ecuador. Novon, 6, 131–133.

  • Vogel, S. (2015). Vertebrate pollination in Compositae: floral syndromes and field observations. Stapfia, 103, 5–26.

    Google Scholar 

  • Wagstaff, S. J., & Breitwieser, I. (2002). Phylogenetic relationships of New Zealand Asteraceae inferred from ITS sequences. Plant Systematics and Evolution, 231, 203–224.

    CAS  Google Scholar 

  • Wagstaff, S. J., Breitwieser, I., & Ito, M. (2011). Evolution and biogeography of Pleurophyllum (Astereae, Asteraceae), a small genus of megaherbs endemic to the subantarctic islands. American Journal of Botany, 98, 62–75.

    PubMed  Google Scholar 

  • White, T. M., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: a guide to methods and applications (pp. 315–321). San Diego, CA: Academic Press.

    Google Scholar 

  • Whittaker, R. J., Araújo, M. B., Jepson, P., Ladle, R. J., Watson, J. E. M., & Willis, K. J. (2005). Conservation biogeography: assessment and prospect. Diversity and Distributions, 11, 3–23.

    Google Scholar 

  • Wilson, S. J., & Coomes, O. T. (2019). ‘Crisis restoration’ in post-frontier tropical environments: Replanting cloud forests in the Ecuadorian Andes. Journal of Rural Studies, 67, 152–165.

    Google Scholar 

  • Xu, X., Zheng, W., Funk, V. A., & Wen, J. (2018a). Home at Last II: Gerbera hieracioides (Kunth) Zardini (Mutisieae, Asteraceae) is really a Chaptalia. PhytoKeys, 95, 93–106.

  • Xu, X., Zheng, W., Funk, V. A., Li, K., Zhang, J., & Wen, J. (2018b). Home at last III: Transferring Uechtritzia and Asian Gerbera species into Oreoseris (Compositae, Mutisieae). PhytoKeys, 96, 1–19. https://doi.org/10.3897/phytokeys.96.23142

  • Zapata, F. (2013). A multilocus phylogenetic analysis of Escallonia (Escalloniaceae): Diversification in montane South America. American Journal of Botany, 100(3), 526–545. https://doi.org/10.3732/ajb.1200297.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Several colleagues assisted in the field or with the identification of materials and access to collections. Special thanks to Mélica Muñoz-Schick (SGO), Carla Maldonado and Stephan Beck (both LPB), Katya Romoleroux (QCA Puce), and Maximilian Weigend (BONN). Henry Gonzales, Gustavo Shimizu and Ricardo Jaramillo helped with photos from the species. M. Monge would like to thank Joao Semir, Marcelo Reginato, Carol Devides and Vinicius Brito for support with the analyses.

Funding

This project has received funding from the Chilean National Research Agency (ANID) by means of two grants to AM-M (Fondecyt 1150425 / 1180211). MM acknowledges the grants (PNPD - Capes 001, Fapesp 09/51706-5 & 11/290-3).

Author information

Authors and Affiliations

Authors

Contributions

AM-M, RAS, MM, FL conceived the study. AM-M, FL, MM, MD studied and collected exemplars in the field. RAS, MJR, HS prepared and performed material extraction and analyses. FL, AM-M, MM and MD did complementary analyses and prepared all figures. AM-M, RAS, MM, FL drafted the manuscript. All authors have read and approve the final version of this manuscript.

Corresponding author

Correspondence to Andrés Moreira-Muñoz.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 173 kb)

ESM 2

(PDF 68.9 kb)

ESM 3

(PDF 8.83 kb)

ESM 4

(PDF 338 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira-Muñoz, A., Scherson, R., Luebert, F. et al. Biogeography, phylogenetic relationships and morphological analyses of the South American genus Mutisia L.f. (Asteraceae) shows early connections of two disjunct biodiversity hotspots. Org Divers Evol 20, 639–656 (2020). https://doi.org/10.1007/s13127-020-00454-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-020-00454-z

Keywords

Navigation