Skip to main content

Advertisement

Log in

Transparent boundary conditions for wave propagation in fractal trees: convolution quadrature approach

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this work we propose high-order transparent boundary conditions for the weighted wave equation on a fractal tree, with an application to the modeling of sound propagation in a human lung. This article follows the recent work (Joly et al. in Netw Heterog Media 14(2):205–264, 2019), dedicated to the mathematical analysis of the corresponding problem and the construction of low-order absorbing boundary conditions. The method proposed in this article consists in constructing the exact (transparent) boundary conditions for the semi-discretized problem, in the spirit of the convolution quadrature method developed by Ch. Lubich. We analyze the stability and convergence of the method, and propose an efficient algorithm for its implementation. The exposition is concluded with numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arioli, M., Benzi, M.: A finite element method for quantum graphs. IMA J. Numer. Anal. 38(3), 1119–1163 (2018)

    Article  MathSciNet  Google Scholar 

  2. Arnold, A., Ehrhardt, M., Sofronov, I.: Discrete transparent boundary conditions for the Schrödinger equation: fast calculation, approximation, and stability. Commun. Math. Sci. 1(3), 501–556 (2003)

    Article  MathSciNet  Google Scholar 

  3. Banjai, L.: Multistep and multistage convolution quadrature for the wave equation: algorithms and experiments. SIAM J. Sci. Comput. 32(5), 2964–2994 (2010)

    Article  MathSciNet  Google Scholar 

  4. Banjai, L., Kachanovska, M.: Fast convolution quadrature for the wave equation in three dimensions. J. Comput. Phys. 279, 103–126 (2014)

    Article  MathSciNet  Google Scholar 

  5. Banjai, L., Lubich, C.: Runge–Kutta convolution coercivity and its use for time-dependent boundary integral equations. IMA J. Numer. Anal. 39(3), 1134–1157 (2019)

    Article  MathSciNet  Google Scholar 

  6. Banjai, L., Lubich, C., Sayas, F.J.: Stable numerical coupling of exterior and interior problems for the wave equation. Numer. Math. 129(4), 611–646 (2015)

    Article  MathSciNet  Google Scholar 

  7. Banjai, L., Sauter, S.: Rapid solution of the wave equation in unbounded domains. SIAM J. Numer. Anal. 47(1), 227–249 (2008/09)

  8. Berkolaiko, G., Kuchment, P.: Introduction to Quantum Graphs, Mathematical Surveys and Monographs, vol. 186. American Mathematical Society, Providence (2013)

    MATH  Google Scholar 

  9. Besse, C., Ehrhardt, M., Lacroix-Violet, I.: Discrete artificial boundary conditions for the linearized Korteweg–de Vries equation. Numer. Methods Partial Differ. Equ. 32(5), 1455–1484 (2016)

    Article  MathSciNet  Google Scholar 

  10. Besse, C., Mésognon-Gireau, B., Noble, P.: Artificial boundary conditions for the linearized Benjamin–Bona–Mahony equation. Numer. Math. 139(2), 281–314 (2018)

    Article  MathSciNet  Google Scholar 

  11. Besse, C., Noble, P., Sanchez, D.: Discrete transparent boundary conditions for the mixed KDV–BBM equation. J. Comput. Phys. 345, 484–509 (2017)

    Article  MathSciNet  Google Scholar 

  12. Cazeaux, P., Grandmont, C., Maday, Y.: Homogenization of a model for the propagation of sound in the lungs. Multiscale Model. Simul. 13(1), 43–71 (2015)

    Article  MathSciNet  Google Scholar 

  13. Cazeaux, P., Hesthaven, J.S.: Multiscale modelling of sound propagation through the lung parenchyma. ESAIM Math. Model. Numer. Anal. 48(1), 27–52 (2014)

    Article  MathSciNet  Google Scholar 

  14. Chabassier, J., Imperiale, S.: Introduction and study of fourth order theta schemes for linear wave equations. J. Comput. Appl. Math. 245, 194–212 (2013)

    Article  MathSciNet  Google Scholar 

  15. Cohen, G., Pernet, S.: Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations, Scientific Computation. Springer, Dordrecht (2017). With a foreword by Patrick Joly

    Book  Google Scholar 

  16. Dai, Z., Peng, Y., Mansy, H.A., Sandler, R.H., Royston, T.J.: Experimental and computational studies of sound transmission in a branching airway network embedded in a compliant viscoelastic medium. J. Sound Vib. 339, 215–229 (2015)

    Article  Google Scholar 

  17. Domínguez, V., Sayas, F.J.: Some properties of layer potentials and boundary integral operators for the wave equation. J. Integral Equ. Appl. 25(2), 253–294 (2013)

    Article  MathSciNet  Google Scholar 

  18. Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements, vol. 159. Springer, Berlin (2013)

    MATH  Google Scholar 

  19. Eruslu, H., Sayas, F.J.: Brushing up a theorem by Lehel Banjai on the convergence of Trapezoidal Rule Convolution Quadrature. arXiv e-prints arXiv:1903.09031 (2019)

  20. Eruslu, H., Sayas, F.J.: Polynomially bounded error estimates for Trapezoidal Rule Convolution Quadrature. Comput. Math. Appl. 79(6), 1634–1643 (2020)

    Article  MathSciNet  Google Scholar 

  21. Grandmont, C., Maury, B., Meunier, N.: A viscoelastic model with non-local damping application to the human lungs. M2AN Math. Model. Numer. Anal. 40(1), 201–224 (2006)

    Article  MathSciNet  Google Scholar 

  22. Gruhne, V.: Numerische Behandlung zeitabhängiger akustischer Streuung im Außen- und Freiraum. Ph.D. thesis, University of Leipzig (2013)

  23. Hairer, E., Lubich, C., Schlichte, M.: Fast numerical solution of nonlinear Volterra convolution equations. SIAM J. Sci. Stat. Comput. 6(3), 532–541 (1985)

    Article  MathSciNet  Google Scholar 

  24. Hassell, M.E., Sayas, F.J.: A fully discrete BEM–FEM scheme for transient acoustic waves. Comput. Methods Appl. Mech. Eng. 309, 106–130 (2016)

    Article  MathSciNet  Google Scholar 

  25. Henry, B.: The Audible Human Project: geometric and acoustic modeling in the airways, lungs and torso. Ph.D. thesis (2018)

  26. Henry, B., Royston, T.J.: A multiscale analytical model of bronchial airway acoustics. J. Acoust. Soc. Am. 4(142), 1774–1783 (2017)

    Article  Google Scholar 

  27. Imperiale, S.: Modélisation mathématique et numérique de capteurs piézoélectriques. Ph.D. thesis, Université Paris Dauphine (2012). http://www.theses.fr/2012PA090003. Accessed 8 Nov 2017

  28. Johnson, C., Nédélec, J.C.: On the coupling of boundary integral and finite element methods. Math. Comput. 35(152), 1063–1079 (1980)

    Article  MathSciNet  Google Scholar 

  29. Joly, P.: Variational methods for time-dependent wave propagation problems. In: Ainsworth, M., Davies, P., Duncan, D., Martin, P., Rynne, B. (eds.) Topics in Computational Wave Propagation. Direct and Inverse Problems. Lecture Notes in Computational Science and Engineering, vol. 31. Springer-Verlag, Berlin (2003)

  30. Joly, P., Kachanovska, M.: Transparent boundary conditions for wave propagation in fractal trees: convolution quadrature approach (extended report) (2019). https://hal.archives-ouvertes.fr/hal-02265345. Accessed 3 Aug 2020

  31. Joly, P., Kachanovska, M.: Local transparent boundary conditions for wave propagation in fractal trees (II). Error and complexity analysis (2020). https://hal.archives-ouvertes.fr/hal-02909750. Accessed 3 Aug 2020

  32. Joly, P., Kachanovska, M.: Local transparent boundary conditions for wave propagation in fractal trees (I). Method and numerical implementation (2020). https://hal.archives-ouvertes.fr/hal-02462264. Accessed 3 Aug 2020

  33. Joly, P., Kachanovska, M., Semin, A.: Wave propagation in fractal trees. Mathematical and numerical issues. Netw. Heterog. Media 14(2), 205–264 (2019)

    Article  MathSciNet  Google Scholar 

  34. Joly, P., Semin, A.: Construction and analysis of improved Kirchoff conditions for acoustic wave propagation in a junction of thin slots. In: Paris-Sud Working Group on Modelling and Scientific Computing 2007–2008, ESAIM Proceedings, vol. 25, pp. 44–67. EDP Sciences, Les Ulis (2008)

  35. Kazakova, M., Noble, P.: Discrete transparent boundary conditions for the linearized Green–Naghdi system of equations. SIAM J. Numer. Anal. 58(1), 657–683 (2020)

    Article  MathSciNet  Google Scholar 

  36. Kovács, B., Lubich, C.: Stable and convergent fully discrete interior–exterior coupling of Maxwell’s equations. Numer. Math. 137(1), 91–117 (2017)

    Article  MathSciNet  Google Scholar 

  37. Lubich, C.: Convolution quadrature and discretized operational calculus. Numer. Math. I. 52(2), 129–145 (1988)

    Article  MathSciNet  Google Scholar 

  38. Lubich, C.: Convolution quadrature and discretized operational calculus. Numer. Math. II 52(4), 413–425 (1988)

    Article  MathSciNet  Google Scholar 

  39. Maury, B.: The Respiratory System in Equations. Springer, Berlin (2013)

    Book  Google Scholar 

  40. Maury, B., Salort, D., Vannier, C.: Trace theorems for trees, application to the human lungs. Netw. Heterog. Media 4(3), 469–500 (2009)

    Article  MathSciNet  Google Scholar 

  41. Melenk, J.M., Rieder, A.: Runge–Kutta convolution quadrature and FEM–BEM coupling for the time-dependent linear Schrödinger equation. J. Integral Equ. Appl. 29(1), 189–250 (2017)

    Article  Google Scholar 

  42. Nelson, T.R., West, B.J., Goldberger, A.L.: The fractal lung: universal and species-related scaling patterns. Experientia 46(3), 251–254 (1990)

    Article  Google Scholar 

  43. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

    MATH  Google Scholar 

  44. Royston, T.J., Zhang, X., Mansy, H.A., Sandler, R.H.: Modeling sound transmission through the pulmonary system and chest with application to diagnosis of a collapsed lung. J. Acoust. Soc. Am. 111(4), 1931–1946 (2002)

    Article  Google Scholar 

  45. Schädle, A.: Non-reflecting boundary conditions for the two-dimensional Schrödinger equation. Wave Motion 35(2), 181–188 (2002)

  46. Semin, A.: Propagation d’ondes dans des jonctions de fentes minces. Ph.D. thesis, Université Paris-Sud (2010)

  47. The Audible Human Project of Acoustics and Vibrations Laboratory of University of Illinois at Chicago (2007–2014). http://acoustics.mie.uic.edu/ahp/htdocs/default.php. Accessed 3 Aug 2020

  48. Weibel, E.R.: Morphometry of the Human Lung. Springer, Berlin (1963)

    Book  Google Scholar 

Download references

Acknowledgements

We are deeply grateful to Adrien Semin (TU Darmstadt, Germany) for providing his code Netwaves.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryna Kachanovska.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Proof of Theorem 2.4

It remains to prove the upper bound on \(\varvec{\Lambda }_{{\mathfrak {a}}}(\omega )\). Without loss of generality, we will show it for \(\varvec{\Lambda }_{{\mathfrak {n}}}(\omega )\). First, \(\varvec{\Lambda }_{{\mathfrak {n}}}(\omega )\) can be defined via the solution of the frequency-domain problem:

$$\begin{aligned} \varvec{\Lambda }_{{\mathfrak {n}}}(\omega )=-\partial _s \lambda (M^*),\quad \omega \in {\mathbb {C}}^+, \end{aligned}$$
(101)

where \(\lambda \in H _\mu ^1({\mathcal {T}})\) solves the boundary-value problem:

$$\begin{aligned} \omega ^2\int \limits _{{\mathcal {T}}} \mu (s)\, \lambda \, {\overline{v}}-\int \limits _{{\mathcal {T}}} \mu (s)\, \partial _s\lambda \, \partial _s {\overline{v}}=0, \quad \text {for all }v\in V_{{\mathfrak {n}}}, \quad \lambda (M^*)=1. \end{aligned}$$
(102)

Let us define \(\Vert v\Vert _{\omega }:=\int \limits _{{\mathcal {T}}}\mu \left( |\partial _s v|^2+|\omega v|^2\right) \). We proceed as follows:

  • first prove the bound \(|\varvec{\Lambda }_{{\mathfrak {n}}}(\omega )|^2\) by the energy of the solution (notice that \(\lambda (M^*)=1\)):

    $$\begin{aligned} \left| \varvec{\Lambda }_{{\mathfrak {n}}}(\omega )\right| ^2 \le |\omega |^2+C_0(1+{\text {Im}}{\omega })\Vert \lambda \Vert _{\omega }^2, \quad C_0>0. \end{aligned}$$
    (103)
  • next show that the energy of the solution is bounded by \(\frac{1}{2}|\varvec{\Lambda }_{{\mathfrak {n}}}(\omega )|^2\), with \(C_0\) as above:

    $$\begin{aligned} \begin{aligned} C_0(1+{\text {Im}}{\omega })\Vert \lambda \Vert _{\omega }^2&\le \frac{1}{2}|\varvec{\Lambda }_{{\mathfrak {n}}}(\omega )|^2+C_1\max (1, ({\text {Im}}{\omega })^{-2})|\omega |^2, \quad C_1>0. \end{aligned} \end{aligned}$$
    (104)
  • combine (103) and (104) to obtain the desired bound:

    $$\begin{aligned} \left| \varvec{\Lambda }_{{\mathfrak {n}}}(\omega )\right| ^2 \le C\max (1, ({\text {Im}}{\omega })^{-2})|\omega |^2. \end{aligned}$$

Proof of the bound (103) Let \(v_0(s)=\chi (s)\partial _s \lambda \), where \(\chi \in C^1({\mathcal {T}}; {\mathbb {R}})\), \({\text {supp}}\chi (s)\subseteq \varSigma _{0,0}\), \(\chi (M^*)=1\) and \(\chi (M_{0,0})=0\). The weak formulation (102) implies that \(\lambda \) satisfies

$$\begin{aligned} \partial _s^2 \lambda +\omega ^2 \lambda =0 \text { on }\varSigma _{0,0}. \end{aligned}$$

Testing the above with \(v_0(s)\), we obtain the following identity on the edge \(\varSigma _{0,0}\), parametrized by \(s\in [0,1]\) (recall that we work with the reference tree, and thus the length of \(\varSigma _{0,0}\) is 1):

$$\begin{aligned} I_1+I_2=0, \quad \text { where } I_1=\int \limits _0^1 \partial _s^2 \lambda \, \chi (s)\, \partial _s {\overline{\lambda }}ds, \quad I_2=\omega ^2 \int \limits _0^1 \lambda \, \chi (s)\, \partial _s {\overline{\lambda }}ds. \end{aligned}$$
(105)

Let \(\omega =\omega _r+i\omega _i\), \(\omega _r\in {\mathbb {R}}\) and \(\omega _i>0\). Let us consider the real part of the above:

$$\begin{aligned} {\text {Re}}{I}_1=\frac{1}{2}\int \limits _0^1\frac{d}{ds}|\partial _s \lambda |^2\chi (s)ds=-\frac{1}{2}\left| \varvec{\Lambda }_{{\mathfrak {n}}}(\omega )\right| ^2-\frac{1}{2}\int \limits _0^1\chi '(s)|\partial _s \lambda |^2ds, \end{aligned}$$
(106)

where in the last identity we used \(\chi (0)=1\) and \(\chi (1)=0\). Combining (105), (106), we deduce

$$\begin{aligned} |\varvec{\Lambda }_{{\mathfrak {n}}}(\omega )|^2\le 2|{\text {Re}}{I}_2|+c_1\int \limits _0^1|\partial _s \lambda |^2 ds, \quad c_1>0. \end{aligned}$$
(107)

Similarly,

$$\begin{aligned} {\text {Re}}{I}_2&=\frac{1}{2}{\text {Re}}{\omega ^2}\int \limits _0^{1}\chi (s) \frac{d}{ds}|\lambda |^2ds-{\text {Im}}\omega ^2 \int \limits _0^1 \chi (s){\text {Im}}(\lambda \partial _s{\overline{\lambda }})ds\\&=-\frac{1}{2}(\omega ^2_r-\omega _i^2)-\frac{1}{2}(\omega ^2_r-\omega _i^2)\int \limits _0^1\chi '(s)|\lambda |^2ds-2\omega _i \omega _r \int \limits _0^1 \chi (s){\text {Im}}(\lambda \partial _s{\overline{\lambda }})ds. \end{aligned}$$

where we used \(\chi (0)=1\), \(\chi (1)=0\) and \(\lambda (0)=1\). Applying to the last integral the Young inequality we obtain the following bound, with \(c_2, c_3>0\),

$$\begin{aligned} |{\text {Re}}{I}_2|\le \frac{1}{2}|\omega |^2+c_2|\omega |^2\int \limits _0^1|\lambda |^2ds+c_3\omega _i\left( |\omega _r|^2\int \limits _0^1|\lambda |^2ds+\int \limits _0^1|\partial _s \lambda |^2 ds\right) . \end{aligned}$$
(108)

Inserting (108) into (107) we prove (103).

Proof of the bound (104) Testing the Helmholtz equation corresponding to (102) with \(\omega \lambda (s)\) and integrating by parts we obtain the following identity (recall that \(\lambda (M^*)=1\)):

$$\begin{aligned} {\overline{\omega }}\varvec{\Lambda }_{{\mathfrak {n}}}(\omega )={\overline{\omega }}\int \limits _{{\mathcal {T}}}\mu |\partial _s \lambda |^2-|\omega |^2\omega \int \limits _{{\mathcal {T}}}\mu |\lambda |^2. \end{aligned}$$

Taking the imaginary part of the above results in

$$\begin{aligned} {\text {Im}}\left( {\overline{\omega }}\varvec{\Lambda }_{{\mathfrak {n}}}(\omega )\right) =-\omega _i\left( \int \limits _{{\mathcal {T}}}\mu |\partial _s \lambda |^2+|\omega |^2\int \limits _{{\mathcal {T}}}\mu |\lambda |^2\right) =-\omega _i\Vert \lambda \Vert _{\omega }^2. \end{aligned}$$

Multiplying both sides of the above by \(-C_0(1+\omega _i)\omega _i^{-1}\), with \(C_0\) is as in (103), we obtain

$$\begin{aligned} -C_0\left( \omega _i^{-1}+1\right) {\text {Im}}\left( {\overline{\omega }}\varvec{\Lambda }_{{\mathfrak {n}}}(\omega )\right) =C_0(1+\omega _i)\Vert \lambda \Vert _{\omega }^2. \end{aligned}$$
(109)

It suffices to notice that the left hand side in the above equality is bounded:

$$\begin{aligned}&\left| -C_0\left( \omega _i^{-1}+1\right) {\text {Im}}\left( {\overline{\omega }}\varvec{\Lambda }_{{\mathfrak {n}}}(\omega )\right) \right| \\&\quad \le C_0\left( \omega _i^{-1}+1\right) |\omega ||\varvec{\Lambda }_{{\mathfrak {n}}}(\omega )|\le \frac{1}{2}|\varvec{\Lambda }_{{\mathfrak {n}}}(\omega )|^2+ \frac{C_0^2}{2}\left( \omega _i^{-1}+1\right) ^2|\omega |^2, \end{aligned}$$

where we used the Young inequality. In the above we bound further \(C_0(\omega _i^{-1}+1)\le 2\max (1, \omega _i^{-1})\). Inserting the bound into (109) gives

$$\begin{aligned}&C_0(1+\omega _i)\Vert \lambda \Vert _{\omega }^2\le \frac{1}{2}|\varvec{\Lambda }_{{\mathfrak {n}}}(\omega )|^2+2C_0^2\max \left( 1,\omega _i^{-2}\right) |\omega |^2, \end{aligned}$$

i.e. (104). Combining (103) and (104) proves the statement of the theorem.

Proof of Lemma 4.1

We first show (86). By definition, \(\tan \omega =i\frac{1-z}{1+z}\), with \(z=\mathrm {e}^{2i\omega }, \, \omega =\omega _r+i\omega _i\). Then,

$$\begin{aligned} -{\text {Im}}\left( \tan \omega \right) ^{-1}&={\text {Re}}\frac{1+z}{1-z}={\text {Re}}\frac{(1+z)(1-{\overline{z}})}{|1-z|^2}=\frac{1-|z|^2}{1+|z|^2-2{\text {Re}}z}\ge \frac{1-|z|^2}{(1+|z|)^2}\nonumber \\&=\frac{1-|z|}{1+|z|}=\frac{1-\mathrm {e}^{-2\omega _i}}{1+\mathrm {e}^{-2\omega _i}}\ge \displaystyle \left\{ \begin{array}{ll} \frac{\mathrm {e}^{2\omega _i}-1}{\mathrm {e}^{2\omega _i}+1}\ge \frac{2\omega _i}{\mathrm {e}^2+1}, &{} \text { if } 0<\omega _i\le 1,\\ &{}\\ \frac{1-\mathrm {e}^{-2}}{1+\mathrm {e}^{-2}}, &{} \text { if }\omega _i>1, \end{array} \right. \end{aligned}$$
(110)

hence the bound (86). Let us show (87). After straightforward computations,

$$\begin{aligned} \left| 1-i\left( \tan \omega \right) ^{-1}\right|&=\frac{2|z|}{|1-z|}\le \frac{2|z|}{|1-|z||}= \frac{2\mathrm {e}^{-2\omega _i}}{1-\mathrm {e}^{-\omega _i}}\le C\max \left( 1, \omega _i^{-1}\right) \mathrm {e}^{-2\omega _i}, \end{aligned}$$

where the last bound follows by noticing that, for \(\omega _i>0\),

$$\begin{aligned} 1-\mathrm {e}^{-\omega _i}\ge \left\{ \begin{array}{ll} 1-\mathrm {e}^{-1}, &{} \text {if }\omega _i\ge 1, \\ \mathrm {e}^{-1}\omega _i, &{} \text { if }\omega _i <1 \end{array}\right. \quad \ge c\min \left( 1, \omega _i\right) , \quad c>0. \end{aligned}$$
(111)

Proof of Proposition 4.3

To prove Proposition 4.3, we need the following auxiliary result.

Lemma C.1

Let \(0<\rho <1\), \(\varepsilon >0\), and \(\lambda _{s,n}^{\varDelta t, \varepsilon }, \, n=0, \ldots , N_t\) be given by (93), with \(N\ge N_t+1\), where \(\max \limits _{k}\left| \varvec{\Lambda }^{s,\varepsilon }\left( \omega _k\right) -\varvec{\Lambda }^s\left( \omega _k\right) \right| <\varepsilon \). Then

$$\begin{aligned} \begin{aligned}&\max \limits _{n=0, \ldots , N_t}\left| \lambda _{s,n}^{\varDelta t, \varepsilon }-\lambda _{s,n}^{\varDelta t}\right| <\rho ^{-N_t}\varepsilon +\rho ^NC_N(\rho ), \\&C_N(\rho )=(1-\rho ^N)^{-1}\left( 1+N_t\varDelta t+N\varDelta t(1-\rho ^N)^{-1}\right) . \end{aligned} \end{aligned}$$
(112)

Proof

For all \(n=0, \ldots , N_t\),

$$\begin{aligned} \left| \lambda _{s,n}^{\varDelta t, \varepsilon }-\lambda _{s,n}^{\varDelta t}\right|&\le S_1+S_2, \nonumber \\ S_1&=\left| \frac{\rho ^{-n}}{N}\sum \limits _{k=0}^{N-1}\mathrm {e}^{-i\frac{2\pi kn}{N}}\left( \varvec{\Lambda }^{s,\varepsilon }\left( \omega _k\right) -\varvec{\Lambda }^{s}\left( \omega _k\right) \right) \right| , \nonumber \\ S_2&=\left| \frac{\rho ^{-n}}{N}\sum \limits _{k=0}^{N-1}\mathrm {e}^{-i\frac{2\pi kn}{N}}\varvec{\Lambda }^{s}\left( \omega _k\right) -\lambda _{s,n}^{\varDelta t}\right| . \end{aligned}$$
(113)

An upper bound for \(S_1\) follows from the triangle inequality and the assumption of the proposition: \(S_1\le \rho ^{-n}\varepsilon \le \rho ^{-N_t}\varepsilon \) (because \(\rho <1\)).

As for \(S_2\), it suffices to replace \(\varvec{\Lambda }^{s}\left( \omega _k\right) \) in the above sum by \(\sum \nolimits _{\ell =0}^{\infty }\lambda _{s,\ell }^{\varDelta t}\rho ^{\ell }\mathrm {e}^{i\frac{2\pi \ell k}{N}}\), cf. (92), and use the aliasing argument. In particular,

$$\begin{aligned} \frac{\rho ^{-n}}{N}\sum \limits _{k=0}^{N-1}\mathrm {e}^{-i\frac{2\pi kn}{N}}\varvec{\Lambda }^{s}\left( \omega _k\right) =\frac{\rho ^{-n}}{ N}\sum \limits _{k=0}^{N-1}\sum \limits _{\ell =0}^{\infty }\lambda _{s,\ell }^{\varDelta t} \, \rho ^{\ell } \, \mathrm {e}^{i\frac{2\pi k(\ell -n)}{N}}. \end{aligned}$$

Since \(N^{-1}\sum \nolimits _{k=0}^{N-1}\mathrm {e}^{i\frac{2\pi k(\ell -n)}{N}}=1\) when \(\ell -n\) is a multiple of N and vanishes otherwise, and \(n\le N_t\le N-1\), the above can be rewritten as follows:

$$\begin{aligned}&\frac{\rho ^{-n}}{N}\sum \limits _{k=0}^{N-1}\mathrm {e}^{-i\frac{2\pi kn}{N}}\varvec{\Lambda }^{s}\left( \omega _k\right) =\lambda _{s, n}^{\varDelta t}+\rho ^{-n}\sum \limits _{k=1}^{\infty }\lambda _{s,kN+n}^{\varDelta t}\rho ^{kN+n},\quad \text { and }\\&S_2\le \rho ^{-n}\sum \limits _{k=1}^{\infty }\left| \lambda _{s,n+kN}^{\varDelta t}\right| \rho ^{n+kN}\overset{(95)}{\le }C\sum \limits _{k=1}^{\infty }\max (1, (n+kN)\varDelta t)\rho ^{kN}. \end{aligned}$$

The above sum is then bounded:

$$\begin{aligned} S_2&\le \sum \limits _{k=1}^{\infty }\rho ^{kN} +\sum \limits _{k=1}^{\infty }\rho ^{kN}(n+kN)\varDelta t\\&\le \rho ^N(1-\rho ^N)^{-1}(1+n\varDelta t)+N\varDelta t\,\rho ^N (1-\rho ^N)^{-2}. \end{aligned}$$

The result follows by bounding in the above \(n\varDelta t\) by \(N_t\varDelta t\) and combining bounds for \(S_1\) and \(S_2\) into (113). \(\square \)

The bound of Lemma C.1 allows us to quantify the choice of \(\rho \), N in (93).

Proof of Proposition 4.3

The desired bound follows by applying the result of Lemma C.1. In particular, \(C_N(\rho )\) can be estimated by providing an adequate estimate on \(1-\rho ^N=1-\varepsilon ^{\frac{N}{N+N_t-1}}\). Because \(N_t\ge 1\), the function \(N\mapsto 1-\varepsilon ^{\frac{N}{N+N_t-1}}=1-\varepsilon \varepsilon ^{\frac{1-N_t}{N+N_t-1}}\) grows in N. Since, additionally, \(N\ge N_t+1\), we have

$$\begin{aligned} 1-\rho ^N\ge 1-\varepsilon ^{\frac{N_t+1}{2N_t}}>1-\sqrt{\varepsilon }>1-\sqrt{\frac{1}{2}},\text { for all } 0<\varepsilon <\frac{1}{2}. \end{aligned}$$

Plugging in this bound into (112) yields \(C_N(\rho )\le C(1+(N+N_t)\varDelta t)\) and

$$\begin{aligned} \max \limits _{n=0, \ldots , N_t}|\lambda _{s,n}^{\varDelta t, \varepsilon }-\lambda _{s,n}^{\varDelta t}|&<\varepsilon ^{\frac{N-1}{N+N_t-1}}+C\varepsilon ^{\frac{N}{N+N_t-1}}(1+(N+N_t)\varDelta t), \end{aligned}$$

from which the desired bound is obtained immediately. \(\square \)

Proof of Lemma 4.2

Let us show (a), which basically follows from Section 5.2.1 in [3]. The frequencies \(\omega _k\) defined in (74), namely,

$$\begin{aligned} \omega _k=i\frac{\delta \left( \rho \mathrm {e}^{i\frac{2\pi k}{N}}\right) }{\varDelta t}=\frac{2i}{\varDelta t}\frac{1-\rho \mathrm {e}^{i\varphi _k}}{1+\rho \mathrm {e}^{i\varphi _k}}, \quad \varphi _k = \mathrm {e}^{i\frac{2\pi k}{N}}, \end{aligned}$$

lie on the circle centered at \(c_{\rho , \varDelta t}\) of radius \(R_{\rho , \varDelta t}\) (this follows from the fact that \(z\mapsto \frac{1-z}{1+z}\) is a homography), with

$$\begin{aligned} c_{\rho ,\varDelta t}=\frac{2i}{\varDelta t}\frac{1+\rho ^2}{1-\rho ^2}, \quad R_{\rho ,\varDelta t}=\frac{2}{\varDelta t}\frac{2\rho }{1-\rho ^2}, \end{aligned}$$
(114)

i.e. \(\omega _k=c_{\rho ,\varDelta t}+R_{\rho ,\varDelta t}\mathrm {e}^{i\psi _k}\), for some \(\psi _k\in [0, 2\pi )\). Hence

$$\begin{aligned} {\text {Im}}\omega _k\ge \inf \limits _{\tiny 0\le \varphi <2\pi } {\text {Im}}\left( i\frac{\delta (\rho \mathrm {e}^{i\varphi })}{\varDelta t}\right) =\frac{2}{\varDelta t}\frac{1+\rho ^2-2\rho }{1-\rho ^2}=\frac{2}{\varDelta t}\frac{1-\rho }{1+\rho }, \end{aligned}$$
(115)

and, as \(\rho <1\), \({\text {Im}}\omega _k>\frac{1-\rho }{\varDelta t}\). For \(\rho \) defined in (97),

$$\begin{aligned} 1-\rho =1-\varepsilon ^{\frac{1}{2N_t}}=1-\exp \left( -\frac{\log \varepsilon ^{-1}}{2N_t}\right)>c_0\min \left( 1, \frac{\log \varepsilon ^{-1}}{N_t}\right) , \quad c_0>0, \end{aligned}$$
(116)

where the last bound follows from (111). Therefore, as \(\varDelta t<1\), and \(\varepsilon <\frac{1}{2}\),

$$\begin{aligned} {\text {Im}}\omega _k>c\min \left( 1, \frac{1}{N_t\varDelta t}\right) ,\quad c>0. \end{aligned}$$

To show (b), we use the same property (114), which results in

$$\begin{aligned} |\omega _k|\le \frac{2}{\varDelta t}\left( \frac{1+\rho ^2}{1-\rho ^2}+\frac{2\rho }{1-\rho ^2}\right) \le \frac{2(1+\rho )}{\varDelta t(1-\rho )}<\frac{4}{\varDelta t(1-\rho )}. \end{aligned}$$

Using (116), and then \(\varepsilon <\frac{1}{2}\), we deduce the following inequality, for some \(C, C'>0\),

$$\begin{aligned} |\omega _k|<\frac{C}{\varDelta t}\max \left( 1, N_t \left( \log \varepsilon ^{-1}\right) ^{-1}\right) \le \frac{C'}{\varDelta t} \max \left( 1, N_t\right) \le \frac{C'}{N_t\varDelta t}N_t^2. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joly, P., Kachanovska, M. Transparent boundary conditions for wave propagation in fractal trees: convolution quadrature approach. Numer. Math. 146, 281–334 (2020). https://doi.org/10.1007/s00211-020-01145-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-020-01145-9

Mathematics Subject Classification

Navigation