Skip to main content
Log in

Genomic analysis suggests Salinispora is a rich source of novel lanthipeptides

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Lanthipeptides are a subgroup of ribosomally encoded and post-translationally modified peptides (RiPPs) which frequently possess potent biological activity. Here we provide the first comprehensive bioinformatic analysis of the lanthipeptide-producing capability of the Salinispora genus, a marine actinomycete. One hundred twenty-two Salinispora arenicola, tropica, and pacifica genomic sequences were analyzed for lanthipeptide gene clusters, and the resulting 182 clusters were divided into seven groups based on sequence similarities. Group boundaries were defined based on LanB and LanM sequences with greater than 80% similarity within groups. Of the seven groups, six are predicted to encode class I lanthipeptides while only one group is predicted to encode class II lanthipeptides. Leader and core peptides were predicted for each cluster along with the number of possible lanthionine bridges. Notably, all of the predicted products of these clusters would represent novel lanthipeptide scaffolds. Of the 122 Salinispora genomes analyzed in this study, 92% contained at least one lanthipeptide gene cluster suggesting that Salinispora is a rich, yet untapped, source of lanthipeptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Data generated and analysed during this study are included in the supplementary information file associated with this publication. Any additional datasets (such as antiSMASH results or MultiGeneBlast results) are available from the corresponding author on reasonable request.

References

  • Amos GCA, Awakawa T, Tuttle RN, Letzel A, Kim MC, Kudo Y, Fenical W, Moore B, Jensen PR (2017) Comparative transcriptomics as a guide to natural product discovery and biosynthetic gene cluster functionality. Proc Natl Acad Sci USA 114:E11121–E11130

    Article  CAS  Google Scholar 

  • Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, Cotter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian K, Fischbach MA, Garavelli JS, Goransson U, Gruber CW, Haft DH, Hemscheidt TK, Hertweck C, Hill C, Horswill AR, Jaspars M, Kelly WL, Klinman JP, Kuipers OP, Link AJ, Liu W, Marahiel MA, Mitchell DA, Moll GN, Moore BS, Muller R, Nair SK, Nes IF, Norris GE, Olivera BM, Onaka H, Patchett ML, Piel J, Reaney MJT, Rebuffat S, Ross RP, Sahl H, Schmidt EW, Selsted ME, Severinov K, Shen B, Sivonen K, Smith L, Stein T, Sussmuth RD, Tagg JR, Tang G, Truman AW, Vederas JC, Walsh CT, Walton JD, Wenzel AC, Willey JM, van der Donk WA (2012) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30:108–160

    Article  Google Scholar 

  • Crooks GE, Hon G, Chandonia J-M, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  CAS  Google Scholar 

  • Dischinger J, Basi Chipalu S, Bierbaum G (2014) Lantibiotics: Promising candidates for future applications in health care. Spec Issue Antiinfect 304:51–62

    CAS  Google Scholar 

  • Goto Y, Li B, Claesen J, Shi Y, Bibb MJ, van der Donk WA (2010a) Discovery of unique lanthionine synthetases reveals new mechanistic and evolutionary insights. PLoS Biol 8(3):e1000339

    Article  Google Scholar 

  • Grigoriev IV, Nordberg H, Shabalov I, Aerts A, Cantor M, Goodstein D, Kuo A, Minovitsky S, Nikitin R, Ohm RA, Otillar R, Poliakov A, Ratnere I, Riley R, Smirnova T, Rokhsar D, Dubchak I (2012) The genome portal of the Department of Energy Joint Genome Institute. Nucleic Acids Res 40:D26–D32

    Article  CAS  Google Scholar 

  • Goto Y, Li B, Claesen J, Shi Y, Bibb MJ, van der Donk WA (2010b) Discovery of unique lanthionine synthetases reveals new mechanistic and evolutionary insights. PLoS Biol 8:e1000339

    Article  Google Scholar 

  • Haft DH, Basu MK (2011) Biological systems discovery in silico: radical S-adenosylmethionine protein families and their target peptides for posttranslational modification. J Bacteriol 193:2745–2755

    Article  CAS  Google Scholar 

  • Jensen PR, Moore BS, Fenical W (2015) The marine actinomycete genus Salinispora: a model organism for secondary metabolite discovery. Nat Prod Rep 32:738–751

    Article  CAS  Google Scholar 

  • Knerr PJ, van der Donk WA (2012) Discovery, biosynthesis, and engineering of lantipeptides. Annu Rev Biochem 81:479–505

    Article  CAS  Google Scholar 

  • Kupke T, Kempter C, Jung G, Götz F (1995) Oxidative decarboxylation of peptides catalyzed by flavoprotein EpiD. determination of substrate specificity using peptide libraries and neutral loss mass spectrometry. J Biol Chem 270:11282–11289

    Article  CAS  Google Scholar 

  • Letzel A-C, Li J, Amos GCA, Millan-Aguinaga N, Ginigini J, Abdelmohsen UR, Gaudencio SP, Ziemert N, Moore BS, Jensen PR (2017) Genomic insights into specialized metabolism in the marine actinomycete Salinispora. Environ Microbiol 19:3660–3673

    Article  CAS  Google Scholar 

  • Madeira F, Park YM, Lee J, Buso N, Gur R, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD, Lopez R (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 47:W636–W641

    Article  CAS  Google Scholar 

  • Marsh AJ, O’Sullivan O, Ross RP, Cotter PD, Hill C (2010) In silico analysis highlights the frequency and diversity of type 1 lantibiotic gene clusters in genome sequenced bacteria. BMC Genom 11:679

    Article  CAS  Google Scholar 

  • Medema MH, Takano E, Breitling R (2013) Detecting sequence homology at the gene cluster level with MultiGeneBlast. Mol Biol Evol 30:1218–1223

    Article  CAS  Google Scholar 

  • Müller WM, Schmiederer T, Ensle P, Süssmuth RD (2010) In vitro biosynthesis of the prepeptide of type-III Lantibiotic Labyrinthopeptin A2 Including formation of a C–C bond as a post-translational modification. Angew Chem Int Ed 49:2436–2440

    Article  Google Scholar 

  • Nordberg H, Cantor M, Dusheyko S, Hua S, Poliakov A, Shabalov I, Smirnova T, Grigoriev IV, Dubchak I (2014) The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res 42:D26–D31

    Article  CAS  Google Scholar 

  • Ökesli A, Cooper LE, Fogle EJ, van der Donk WA (2011) Nine post-translational modifications during the biosynthesis of cinnamycin. J Am Chem Soc 133:13753–13760

    Article  Google Scholar 

  • Oman TJ, van der Donk WA (2010) Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nat Chem Biol 6:9–18

    Article  CAS  Google Scholar 

  • Piper C, Cotter PD, Ross RP, Hill C (2009) Discovery of medically significant lantibiotics. Curr Drug Discov Technol 6:1–18

    Article  CAS  Google Scholar 

  • Plat A, Kuipers A, Rink R, Moll GN (2013) Mechanistic aspects of lanthipeptide leaders. Curr Protein Pept Sci 14:85–96

    Article  CAS  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  Google Scholar 

  • Shi Y, Bueno A, van der Donk WA (2012) Heterologous production of the lantibiotic Ala(0)Actagardine in Escherichia coli. Chem Commun (Camb) 48:10966–10968

    Article  CAS  Google Scholar 

  • Udwary DW, Zeigler L, Asolkar RN, Singan V, Lapidus A, Fenical W, Jensen PR, Moore BS (2007) Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proc Natl Acad Sci USA 104:10376–10381

    Article  CAS  Google Scholar 

  • van der Donk WA, Nair SK (2014) Structure and mechanism of lanthipeptide biosynthetic enzymes. Curr Opin Struct Biol 29:58–66

    Article  Google Scholar 

  • van Heel AJ, de Jong A, Song C, Viel JH, Kok J, Kuipers OP (2018) BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res 46:W278–W281

    Article  Google Scholar 

  • Vastermark A, Wollwage S, Houle ME, Rio R, Saier MH Jr (2014) Expansion of the APC superfamily of secondary carriers. Proteins 82:2797–2811

    Article  CAS  Google Scholar 

  • Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Muller R, Wohlleben W, Breitling R, Takano E, Medema MH (2015) antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43:W237–243

    Article  CAS  Google Scholar 

  • Zhang Q, Doroghazi JR, Zhao X, Walker MC, van der Donk WA (2015) Expanded natural product diversity revealed by analysis of lanthipeptide-like gene clusters in actinobacteria. Appl Environ Microbiol 81:4339–4350

    Article  CAS  Google Scholar 

  • Zhang Q, Yu Y, Vélasquez JE, van der Donk WA (2012) Evolution of lanthipeptide synthetases. Proc Natl Acad Sci 109:18361–18366

    Article  CAS  Google Scholar 

  • Ziemert N, Lechner A, Wietz M, Millan-Aguinaga N, Chavarria KL, Jensen PR (2014) Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora. Proc Natl Acad Sci U S A 111:E1130–1139

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Kevin Bucholtz, Garland Crawford, David Goode, and Jeff Hugdahl for helpful conversations and valuable feedback.

Funding

This study was funded by Mercer University’s Provost Office, Research that Reaches Out office, and the Department of Chemistry.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study design and analysis of data. Data collection and analysis were performed by CGK, MEH, DHS, SCS, and EML. The first draft of the manuscript was written by EML and CGK, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Emilianne M. Limbrick.

Ethics declarations

Conflict of interest

Caroline G. Kittrell declares that she has no conflict of interest. Shailey C. Shah declares that she has no conflict of interest. Matthew E. Halbert declares that he has no conflict of interest. Dylan H. Scott declares that he has no conflict of interest. Emilianne M. Limbrick declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Stefan Hohmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kittrell, C.G., Shah, S.C., Halbert, M.E. et al. Genomic analysis suggests Salinispora is a rich source of novel lanthipeptides. Mol Genet Genomics 295, 1529–1535 (2020). https://doi.org/10.1007/s00438-020-01718-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-020-01718-1

Keywords

Navigation