Skip to main content

Advertisement

Log in

Distinct lipid signatures are identified in the plasma of rats with chronic inflammation induced by estradiol benzoate and sex hormones

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Prostatitis is likely to occur in younger or middle-aged men, while prostate cancer is likely to occur in older men. Although amino acids and lipids as biomarkers of prostate cancer have been examined using prostate cancer cell lines/tissues, no previous studies have evaluated amino acids or lipids as potential chronic prostatitis biomarkers.

Objectives

The study’s aim was to identify amino acids and lipids that could serve as potential biomarkers of chronic prostatitis.

Methods

We profiled the amino acids and lipids found in plasma from rats collected in a previous study. In brief, a total of 148 Sprague–Dawley rats (offspring) were dosed with estradiol benzoate (EB) on postnatal days (PNDs) 1, 3 and 5, and subsequently dosed with testosterone (T)/estradiol (E) tubes via subcutaneous implants from PND 90 to 200. Plasma was collected on PNDs 30, 90, 100, 145 and 200. Analysis was conducted with a Xevo TQ-S triple-quadrupole mass spectrometer using a Biocrates AbsoluteIDQ p180 kit.

Results

Plasma acylcarnitines [(C2, C16:1, C18, C18:1, C18:1-OH, and C18:2)], glycerophospholipids (lysophosphatidylcholine-acyl, -di-acyl, and -di-acyl acyl-alkyl) and sphingomyelins [SM (OH) C16:1, SM C18:0, SM C18:1, and SM C20:2] significantly increased on PND 145, when chronic inflammation was observed in the dorsolateral prostate of rats dosed with EB, T, and E. No statistical significances of amino acid levels were observed in the EB + T + E group on PND 145.

Conclusion

Exposure to EB, T, and E altered lipid levels in rat plasma with chronic prostate inflammation. These findings suggest that the identified lipids may be predictive chronic prostatitis biomarkers. The results require confirmation through additional nonclinical and human studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data will be deposited at Metabolights once the manuscript is accepted.

References

  • Aiyar, N., Disa, J., Ao, Z., Ju, H., Nerurkar, S., Willette, R. N., et al. (2007). Lysophosphatidylcholine induces inflammatory activation of human coronary artery smooth muscle cells. Molecular and Cellular Biochemistry, 295(1–2), 113–120.

    Article  CAS  Google Scholar 

  • Al-Kadhi, O., Traka, M. H., Melchini, A., Troncoso-Rey, P., Jurkowski, W., Defernez, M., et al. (2017). Increased transcriptional and metabolic capacity for lipid metabolism in the peripheral zone of the prostate may underpin its increased susceptibility to cancer. Oncotarget, 8(49), 84902–84916.

    Article  Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289–300.

    Google Scholar 

  • Bi, X., & Henry, C. J. (2017). Plasma-free amino acid profiles are predictors of cancer and diabetes development. Nutrition and Diabetes, 7(3), e249. https://doi.org/10.1038/nutd.2016.55.

    Article  CAS  PubMed  Google Scholar 

  • Butler, L. M., Centenera, M. M., & Swinnen, J. V. (2016). Andrtogen control of lipid metabolism in prostate cancer: Novel insights and future applications. Endocrine-Related Cancer, 23(5), R219–R227. https://doi.org/10.1530/ERC-15-0556.

    Article  CAS  PubMed  Google Scholar 

  • Collins, M. M., Stafford, R. S., O'Leary, M. P., & Barry, M. J. (1998). How common is prostatitis? A national survey of physician visits. Journal of Urology, 159(4), 1224–1228.

    Article  CAS  Google Scholar 

  • Dereziński, P., Klupczynska, A., Sawicki, W., Pałka, J. A., & Kokot, Z. J. (2017). Amino acid profiles of serum and urine in search for prostate cancer biomarkers: A pilot study. International Journal of Medical Sciences, 14(1), 1–12. https://doi.org/10.7150/ijms.15783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doiron, R. C., & Nickel, J. C. (2018). Management of chronic prostatitis/chronic pelvic pain syndrome. Canadian Urological Association Journal, 12(6 Suppl 3), S161–S163. https://doi.org/10.5489/cuaj.5325.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilleran, J. P., Putz, O., DeJong, M., DeJong, S., Birch, L., Pu, Y., et al. (2003). The role of prolactin in the prostatic inflammatory response to neonatal estrogen. Endocrinology, 144(5), 2046–2054.

    Article  CAS  Google Scholar 

  • Gómez-Cebrián, N., Rojas-Benedicto, A., Albors-Vaquer, A., López-Guerrero, J. A., Pineda-Lucena, A., & Puchades-Carrasco, L. (2019). Metabolomics contributions to the discovery of prostate cancer biomarkers. Metabolites, 9(3), 48.

    Article  Google Scholar 

  • Giskeødegård, G. F., Bertilsson, H., Selnæs, K. M., Wright, A. J., Bathen, T. F., Viset, T., et al. (2013). Spermine and citrate as metabolic biomarkers for assessing prostate cancer aggressiveness. PLoS ONE, 8(4), e62375.

    Article  Google Scholar 

  • Ho, S. M., Tang, W. Y., Belmonte de Frausto, J., & Prins, G. S. (2006). Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Research, 66(11), 5624–5632.

    Article  CAS  Google Scholar 

  • Hoeferlin, L. A., Wijesinghe, D. S., & Chalfant, C. E. (2013). The role of ceramide-1-phosphate in biological functions. Handbook of Experimental Pharmacology, 215, 153–166.

    Article  CAS  Google Scholar 

  • Hunter, W. G., Kelly, J. P., McGarrah, R. W., Khouri, M. G., Craig, D., Haynes, C., et al. (2016). Metabolomic profiling identifies novel circulating biomarkers of mitochondrial dysfunction differentially elevated in heart failure with preserved versus reduced ejection fraction: Evidence for shared metabolic impairments in clinical heart failure. Journal of the American Heart Assocciation, 5(8), e003190.

    Google Scholar 

  • Jain, M., Nilsson, R., Sharma, S., Madhusudhan, N., Kitami, T., Souza, A. L., et al. (2012). Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science, 336(6084), 1040.

    Article  CAS  Google Scholar 

  • Jones, L. L., McDonald, D. A., & Borum, P. R. (2010). Acylcarnitines: Role in brain. Progress in Lipid Research, 49(1), 61–75.

    Article  CAS  Google Scholar 

  • Johnson, W. E., Li, C., & Rabinovic, A. (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 8(1), 118–127.

    Article  Google Scholar 

  • Kdadra, M., Höckner, S., Leung, H., Kremer, W., & Schiffer, E. (2019). Metabolomics biomarkers of prostate cancer: A systematic review. Diagnostics (Basel, Switzerland), 9(1), 21. https://doi.org/10.3390/diagnostics9010021.

    Article  CAS  Google Scholar 

  • Knowles, R. G., & Moncada, S. (1994). Nitric oxide synthases in mammals. Biochemical Journal, 298(Pt 2), 249–258.

    Article  CAS  Google Scholar 

  • Köhler, E. S., Sankaranarayanan, S., van Ginneken, C. J., van Dijk, P., Vermeulen, J. L., Ruijter, J. M., et al. (2008). The human neonatal small intestine has the potential for arginine synthesis; developmental changes in the expression of arginine-synthesizing and -catabolizing enzymes. BMC Developmental Biology, 8, 107.

    Article  Google Scholar 

  • Krieger, J. N., Lee, S. W., Jeon, J., Cheah, P. Y., Liong, M. L., & Riley, D. E. (2008). Epidemiology of prostatitis. International Journal of Antimicrobial Agents, 31(Suppl 1), S85–90. https://doi.org/10.1016/j.ijantimicag.2007.08.028.

    Article  CAS  PubMed  Google Scholar 

  • Kühn, T., Floegel, A., Sookthai, D., Johnson, T., Rolle-Kampczyk, U., Otto, W., et al. (2016). Higher plasma levels of lysophosphatidylcholine 18:0 are related to a lower risk of common cancers in a prospective metabolomics study. BMC Medicine, 14, 13.

    Article  Google Scholar 

  • Law, S. H., Chan, M. L., Marathe, G. K., Parveen, F., Chen, C. H., & Ke, L. Y. (2019). An updated review of lysophosphatidylcholine metabolism in human diseases. International Journal of Molecular Sciences, 20(5), 1149.

    Article  CAS  Google Scholar 

  • Liepinsh, E., Makrecka-Kuka, M., Volska, K., Kuka, J., Makarova, E., Antone, U., et al. (2016). Long-chain acylcarnitines determine ischaemia/reperfusion-induced damage in heart mitochondria. The Biochemical Journal, 473(9), 1191–1202.

    Article  CAS  Google Scholar 

  • Mallah, K., Quanico, J., Raffo-Romero, A., Cardon, T., Aboulouard, S., Devos, D., et al. (2019). Matrix-assisted laser desorption/ionization-mass spectrometry imaging of lipids in experimental model of traumatic brain injury detecting acylcarnitines as injury related markers. Analytical Chemistry, 91(18), 11879–11887.

    Article  CAS  Google Scholar 

  • McCorquodale, D. J., & Mueller, G. C. (1958). Effect of estradiol on the level of amino acid-activating enzymes in the rat uterus. The Journal of Biological Chemistry, 232(1), 31–42.

    CAS  PubMed  Google Scholar 

  • McGill, M. R., Li, F., Sharpe, M. R., Williams, C. D., Curry, S. C., Ma, X., et al. (2014). Circulating acylcarnitines as biomarkers of mitochondrial dysfunction after acetaminophen overdose in mice and humans. Archives of Toxicology, 88(2), 391–401.

    Article  CAS  Google Scholar 

  • McNeill, A. M., Zhang, C., Stanczyk, F. Z., Duckles, S. P., & Krause, D. N. (2002). Estrogen increases endothelial nitric oxide synthase via estrogen receptors in rat cerebral blood vessels: Effect preserved after concurrent treatment with medroxyprogesterone acetate or progesterone. Stroke, 33(6), 1685–1691.

    Article  CAS  Google Scholar 

  • Nakamura, N., Davis, K., Yan, J., Sloper, D. T., & Chen, T. (2020). Increased estrogen levels induced altered microRNA expression in prostate and plasma of rats dosed with sex hormones. Andrology. https://doi.org/10.1111/andr.12780.

    Article  PubMed  Google Scholar 

  • National Research Council. (2011). Guide for the care and use of laboratory animals. Washington, DC: National Academy Press.

    Google Scholar 

  • Nickel, J. C. (2011). Prostatitis. Canadian Urological Association Journal, 5(5), 306–315. https://doi.org/10.5489/cuaj.11211.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nickel, J. C. (2012). Prostatitis and related conditions, orchitis, and epididymitis. In A. J. Wein, L. R. Kavoussi, A. C. Novick, A. W. Partin, & C. A. Peters (Eds.), Campbell-Walsh urology (pp. 327–356). Philadelphia: Saunders.

    Chapter  Google Scholar 

  • Payne, S. G., Milstien, S., & Spiegel, S. (2002). Sphingosine-1-phosphate: Dual messenger functions. FEBS Letters, 531(1), 54–57.

    Article  CAS  Google Scholar 

  • Perletti, G., Monti, E., Magri, V., Cai, T., Cleves, A., Trinchieri, A., et al. (2017). The association between prostatitis and prostate cancer. Systematic review and meta-analysis. Archivio italiano di urologia, andrologia : organo ufficiale [di] Societa italiana di ecografia urologica e nefrologica, 89(4), 259–265. https://doi.org/10.4081/aiua.2017.4.259.

    Article  Google Scholar 

  • R Core Team. (2019). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing.

  • Ren, S., Shao, Y., Zhao, X., Hong, C. S., Wang, F., Lu, X., et al. (2016). Integration of metabolomics and transcriptomics reveals major metabolic pathways and potential biomarker involved in prostate cancer. Molecular & Cellular Proteomics, 15(1), 154–163.

    Article  CAS  Google Scholar 

  • Richard, G., Batstone, D., & Doble, A. (2003). Chronic prostatitis. Current Opinion in Urology, 13(1), 23–29.

    Article  Google Scholar 

  • Russell, P. J., & Voeks, D. J. (2003). Animal models of prostate cancer. Methods in Molecular Medicine, 81, 89–112.

    CAS  PubMed  Google Scholar 

  • Rutkowsky, J. M., Knotts, T. A., Ono-Moore, K. D., McCoin, C. S., Huang, S., Schneider, D., et al. (2014). Acylcarnitines activate proinflammatory signaling pathways. American Journal of Physiology: Endocrinology and Metabolism, 306(12), E1378–E1387.

    CAS  PubMed  Google Scholar 

  • Schnackenberg, L. K., Pence, L., Vijay, V., Moland, C. L., George, N., Cao, Z., et al. (2016). Early metabolomics changes in heart and plasma during chronic doxorubicin treatment in B6C3F1 mice. Journal of Applied Toxicology, 36(11), 1486–1495.

    Article  CAS  Google Scholar 

  • Schooneman, M. G., Vaz, F. M., Houten, S. M., & Soeters, M. R. (2013). Acylcarnitines: reflecting or inflicting insulin resistance? Diabetes, 62(1), 1–8.

    Article  CAS  Google Scholar 

  • Sfanos, K. S., Yegnasubramanian, S., Nelson, W. G., & De Marzo, A. M. (2018). The inflammatory microenvironment and microbiome in prostate cancer development. Nature Reviews Urology, 15(1), 11–24. https://doi.org/10.1038/nrurol.2017.167.

    Article  PubMed  Google Scholar 

  • Slotte, J. P. (2013). Biological functions of sphingomyelins. Progress in Lipid Research, 52(4), 424–437.

    Article  CAS  Google Scholar 

  • Sorvina, A., Bader, C. A., Caporale, C., Carter, E. A., Johnson, I. R. D., Parkinson-Lawrence, E. J., et al. (2018). Lipid profiles of prostate cancer cells. Oncotarget, 9(85), 35541–35552.

    Article  Google Scholar 

  • Tong, Y.-C. (2011). The role of cholesterol in prostatic diseases. Urological Science, 22(3), 97–102.

    Article  CAS  Google Scholar 

  • Tracey, T. J., Steyn, F. J., Wolvetang, E. J., & Ngo, S. T. (2018). Neuronal lipid metabolism: Multiple pathways driving functional outcomes in health and disease. Frontiers in Molecular Neuroscience, 11, 10.

    Article  Google Scholar 

  • Treede, I., Braun, A., Sparla, R., Kühnel, M., Giese, T., Turner, J. R., et al. (2007). Anti-inflammatory effects of phosphatidylcholine. The Journal of Biological Chemistry, 282(37), 27155–27164.

    Article  CAS  Google Scholar 

  • van der Veen, J. N., Kennelly, J. P., Wan, S., Vance, J. E., Vance, D. E., & Jacobs, R. L. (2017). The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochimica et Biophysica Acta: Biomembranes, 1859(9 Pt B), 1558–1572.

    Article  Google Scholar 

  • Voelkel-Johnson, C., Norris, J. S., & White-Gilbertson, S. (2018). Interdiction of sphingolipid metabolism revisited: Focus on prostate cancer. Advantage of Cancer Research, 140, 265–293. https://doi.org/10.1016/bs.acr.2018.04.014.

    Article  CAS  Google Scholar 

  • Wang, W., Wu, Z., Dai, Z., Yang, Y., Wang, J., & Wu, G. (2013). Glycine metabolism in animals and humans: Implications for nutrition and health. Amino Acids, 45(3), 463–477. https://doi.org/10.1007/s00726-013-1493-1.

    Article  CAS  PubMed  Google Scholar 

  • Young, D. L. (1971). Estradiol- and testosterone-induced alterations in phosphatidylcholine and triglyceride synthesis in hepatic endoplasmic reticulum. Journal of Lipid Research, 12(5), 590–595.

    CAS  PubMed  Google Scholar 

  • Zhang, L., Wang, Y., Qin, Z., Gao, X., Xing, Q., Li, R., et al. (2020). Correlation between prostatitis, benign prostatic hyperplasia and prostate cancer: A systematic review and meta-analysis. Journal of Cancer, 11(1), 177–189. https://doi.org/10.7150/jca.37235.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou, X., Mao, J., Ai, J., Deng, Y., Roth, M. R., Pound, C., et al. (2012). Identification of plasma lipid biomarkers for prostate cancer by lipidomics and bioinformatics. PLoS ONE, 7(11), e48889.

    Article  CAS  Google Scholar 

  • Zhu, Y. S. (2005). Molecular basis of steroid action in the prostate. Cellscience, 1(4), 27–55.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Drs. Laura Schnackenberg and Pierre Alusta for their suggestions on the manuscript, and Dr. John K. Leighton (CDER) for his suggestions on this project proposal. The author (N.N.) thanks Mr. Ralph Patton and Ms. Kristie Voris, TPA, for plasma preparation, Ms. Sara Lewis for manuscript editing, and Ms. Patricia Shores and Ms. Kathy Carroll for preparing the cage cards.

Funding

This study was funded by NCTR/FDA (E0759701).

Author information

Authors and Affiliations

Authors

Contributions

NN conceived of the presented idea and experimental design. NN wrote the manuscript and finalized the manuscript, incorporating all of the co-authors’ comments. LMP performed the metabolomic analysis, analyzed data, and assisted with manuscript preparation. ZC performed the statistical analysis and provided Figures. RDB suggested the appropriate metabolomics analysis method. LMP, ZC, and RDB provided suggestions.

Corresponding author

Correspondence to Noriko Nakamura.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

All applicable guidelines set by the National Research Council’s “Guide for the Care and Use of Laboratory Animals” and the NCTR Institutional Animal Care and Use Committee were followed.

Informed consent

This study used animals and didn’t use any samples from humans. This manuscript has not been published or presented elsewhere in part or in entirety and is not under consideration by another journal. We have read and understood your journal’s policies, and we believe that neither this manuscript nor this study violates any of those policies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Disclaimer

The views expressed are those of the authors and do not represent the views of the U.S. Food and Drug Administration.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, N., Pence, L.M., Cao, Z. et al. Distinct lipid signatures are identified in the plasma of rats with chronic inflammation induced by estradiol benzoate and sex hormones. Metabolomics 16, 95 (2020). https://doi.org/10.1007/s11306-020-01715-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-020-01715-w

Keywords

Navigation