Skip to main content
Log in

A review on grafted, crosslinked and composites of biopolymer Xanthan gum for phasing out synthetic dyes and toxic metal ions from aqueous solutions

  • REVIEW PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Biopolymer Xanthan gum (XG), an exo-polysaccharide obtained from the fermentation of simple sugars by bacteria Xanthomonas campestris under aerobic conditions exhibits interesting properties like biodegradability, high viscosity at a low shear rate and stability under a wide range of temperature and pH. These characteristics properties render it accessible to utilize as a stabilizer, suspending as well as an emulsifying agent in food industries, petroleum and oil refining industries, cosmetic industries, and as an adsorbent in wastewater treatment. However, XG hydrophilicity and water solubility characteristics not only restrict its application domain but also affect its thermal stability during processing. Therefore, the efforts are directed to improve its application spectrum by modifying the physical and chemical characteristics of biopolymer, taking advantage of the presence of different amenable functional moieties in XG. The chemical modifications of XG include the formation of cross-linked polymers, grafting of monomer to base polymers manipulating the functionality by removal/addition of chemical groups. Currently, the emphasis is on the development of XG based grafted/crosslinked bionanocomposites which can be tailored as a noble adsorbent for wastewater treatment for the remotion of toxic metals, coloured synthetic dyes and other industrial effluents from the aqueous medium. The emphasis of present review article is to address the structural, physical characteristics along with the focus on the development of chemically modified XG viz. grafted, crosslinked, nanocomposites, and functionally modified biopolymer. The potential applications of these modified XG polymers for phasing out synthetic dyes and transition metals ions from aqueous systems have been deliberated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.
Fig. 7

Similar content being viewed by others

References

  1. Kozłowska J, Prus W, Stachowiak N (2019) Microparticles based on natural and synthetic polymers for cosmetic applications. Int J Biol Macromol 129:952–956

    PubMed  Google Scholar 

  2. Dmour I, Taha MO (2018) Natural and semisynthetic polymers in pharmaceutical nanotechnology. Elesevier, Amsterdam

    Google Scholar 

  3. Batista RA, Perez Espitia PJ, De Souza Siqueira Quintans J, Freitas MM, Cerqueira MÂ, Teixeira JA, Cardoso JC (2018) Hydrogel as an alternative structure for food packaging systems. Carbohydr Polym 205:106–116

    PubMed  Google Scholar 

  4. Zhou L, Zhou H, Yang X (2019) Preparation and performance of a novel starch-based inorganic/organic composite coagulant for textile wastewater treatment. Sep Purif Technol 210:93–99

    CAS  Google Scholar 

  5. Kang M, Oderinde O, Liu S, Huang Q, Ma W, Yao F, Fu G (2019) Characterization of xanthan gum-based hydrogel with Fe3+ ions coordination and its reversible sol-gel conversion. Carbohydr Polym 203:139–147

    CAS  PubMed  Google Scholar 

  6. Soares RMD, Siqueira NM, Prabhakaram MP, Ramakrishna S (2018) Electrospinning and electrospray of bio-based and natural polymers for biomaterials development. Mater Sci Eng 92:969–982

    CAS  Google Scholar 

  7. Duan M, Ma J, Fang S (2019) Synthesis of hydrazine-grafted guar gum material for the highly effective removal of organic dyes. Carbohyd Polym 211:308–314

    CAS  Google Scholar 

  8. Palaniraj A, Jayaraman V (2011) Production, recovery and applications of xanthan gum by Xanthomonas campestris. J Food Eng 106:1–12

    CAS  Google Scholar 

  9. García-Ochoa F, Santos VE, Casas JA, Gómez E (2000) Xanthan gum: production, recovery, and properties. Biotechnol Adv 18:549–579

    PubMed  Google Scholar 

  10. Song Z, Ling P, Zang H, Li L, Wang J, Jin Y, Shao H, Zhu X, Liu F, Wang F (2015) Development, validation andinfluence factor analysis of a near-infrared method for the molecular weight determination of xanthan gum. Carbohydr Polym 115:582–588

    CAS  PubMed  Google Scholar 

  11. Bueno VB, Bentini R, Catalani LH, Petri DF (2013) Synthesis and swelling behavior of xanthan-based hydrogels. Carbohydr Polym 92:1091–1099

    CAS  PubMed  Google Scholar 

  12. Pooja D, Panyaram S, Kulhari H, Rachamalla SS, Sistla R (2014) Xanthan gum stabilized gold nanoparticles: characterization, biocompatibility, stability and cytotoxicity. Carbohydr Polym 110:1–9

    CAS  PubMed  Google Scholar 

  13. Moschakis T, Murray BS, Dickinson E (2005) Microstructural evolution of viscoelastic emulsions stabilised by sodium caseinate and xanthan gum. J Colloid Interface Sci 284:714–728

    CAS  PubMed  Google Scholar 

  14. Demirci AS, Palabıyık I, Apaydın D, Mirik M, Gümüs T (2018) Xanthan gum biosynthesis using Xanthomonas isolates from waste bread: process optimization and fermentation kinetics. LWT 101:40–47

    Google Scholar 

  15. Rosalam S, England R (2006) Review of xanthan gum production from unmodified starches by Xanthomonas comprestris. Enzym Microb Technol 39:197–207

    CAS  Google Scholar 

  16. Moorhouse R, Walkinshaw MD, Arnott S (1977) Xanthan gum—molecular conformation and interactions. Extracellular Microbial Polysaccharides 45:90–102

    CAS  Google Scholar 

  17. Cheetham NWH, Mashimba ENM (1992) Proton and carbon-13 NMR studies on xanthan derivatives. Carbohydr Polym 17:127–136

    CAS  Google Scholar 

  18. Hjerde T, Kristiansen TS, Stokke BT, Smidsrød O, Christensen BE (1994) Conformation dependent depolymerisation kinetics of polysaccharides studied by viscosity measurements. Carbohydr Polym 24:265–275

    CAS  Google Scholar 

  19. Stokke BT, Christensen BE (1996) Release of disordered xanthan oligomers upon partial acid hydrolysis of double-stranded xanthan. Food Hydrocoll 10:83–89

    CAS  Google Scholar 

  20. Shojaeian M, Sezen M, Koşar A (2016) Pool boiling heat transfer characteristics of non-Newtonian xanthan gum solutions. Exp Thermal Fluid Sci 70:77–84

    CAS  Google Scholar 

  21. Zou Z, Zhao Q, Wang Q, Zhou F (2019) Thermal stability of xanthan gum biopolymer and its application in salt-tolerant bentonite water-based mud. J Polym Eng 39:501–507

    CAS  Google Scholar 

  22. Sriprablom J, Luangpituksa P, Wongkongkatep J, Pongtharangkul T, Suphantharik M (2018) Influence of pH and ionic strength on the physical and rheological properties and stability of whey protein stabilized o/w emulsions containing xanthan gum. J Food Eng 242:141–152

    Google Scholar 

  23. Zhang Q, Hu XM, Wu MY, Wang MM, Zhao YY, Li TT (2019) Synthesis and performance characterization of poly(vinyl alcohol)-xanthan gum composite hydrogel. React Funct Polym 136:34–43

    CAS  Google Scholar 

  24. Reinoso D, Martín-Alfonso MJ, Luckham PF, Martínez-Boza FJ (2018) Rheological characterisation of xanthan gum in brine solutions at high temperature. Carbohydr Polym 203:103–109

    PubMed  Google Scholar 

  25. Tako M, Nakamura S (1984) Rheological properties of deacetylated xanthan in aqueous media. Biol Chem 48:2987–2993

    CAS  Google Scholar 

  26. Shatwell KP, Sutherland IW, Ross-Murphy SB (1990) Influence of acetyl and pyruvate substituents on the solution properties of xanthan polysaccharide. J Biol Macromol 12:71–78

    CAS  Google Scholar 

  27. Bergmann D, Furth G, Maye C (2008) Binding of bivalent cations by xanthan in aqueous solution. Int J Biol Macromol 43:245–251

    CAS  PubMed  Google Scholar 

  28. Dário AF, Hortêncio LM, Sierakowski MR, Neto JCQ, Petri DFS (2011) The effect of calcium salts on the viscosity and adsorption behavior of xanthan. Carbohydr Polym 84:669–676

    Google Scholar 

  29. Petri DF (2015) A versatile biopolymer for biomedical AC technological applications. J Appl Polym 132:1–13

    Google Scholar 

  30. Whitcomb PJ, Macosko CW (1978) Rheology of xanthan gum. J Rheol 22:493–505

    CAS  Google Scholar 

  31. Zatz JL, Knapp S (1984) Viscosity of xanthan gum solutions at low shear rates. J Pharm Sci 73:468–471

    CAS  PubMed  Google Scholar 

  32. Xuewu Z, Xin L, Dexiang G, Wei Z, Tong X, Yonghong M (1996) Rheological models for xanthan gum. J Food Eng 27:203–209

    Google Scholar 

  33. Khan SY, Yusuf M, Sardar N (2018) Studies on rheological behavior of xanthan gum solutions in presence of additives. Pet Petro Chem Eng J 2:1–7

    Google Scholar 

  34. Pandey S, Ramontja J (2016b) Rapid facile microwave-assisted synthesis of xanthan gum grafted polyaniline for chemical sensor. Int J Biol Macromol 89:89–98

    CAS  PubMed  Google Scholar 

  35. Arismendi C, Chillo S, Conte A, Del Nobile MA, Flores S (2013) Optimization of physical properties of xanthan gum/tapioca starch edible matrices containing potassium sorbate and evaluation of its antimicrobial effectiveness. LWT-Food Sci Technol 53:290–296

    CAS  Google Scholar 

  36. Ebrahiminezhad A, Moeeni F, Taghizadeh SM, Seifan M, Bautista C, Novin D, Ghasemi Y, Berenjian A (2019) Xanthan gum capped ZnO microstars as a promising dietary zinc supplementation. Foods 8:1–10

    Google Scholar 

  37. Katzbauer B (1998) Properties and applications of xanthan gum. Polym 59:81–84

    CAS  Google Scholar 

  38. Abu Elella MH, Sabaa MW, Elhafeez EA, Mohamed RR (2019) Crystal violet dye removal using crosslinked grafted xanthan gum. Int J Biol Macromol 137:1086–1101

    CAS  PubMed  Google Scholar 

  39. Bulbul VJ, Bhushette PR, Zambare RS, Deshmukh RR, Annapure US (2019) Effect of cold plasma treatment on xanthan gum properties. Polym Test 79:1–9

    Google Scholar 

  40. Kumar A, Rao KM, Han SS (2018) Application of xanthan gum as polysaccharide in tissue engineering: a review. Carbohydr Polym 180:128–144

    CAS  PubMed  Google Scholar 

  41. Cai X, Du X, Cui D, Wang X, Yang Z, Zhu G (2019) Improvement of stability of blueberry anthocyanins by carboxymethyl starch/xanthan gum combinations microencapsulation. Food Hydrocoll 91:238–245

    CAS  Google Scholar 

  42. Singhvi G, Hans N, Shiva N, Kumar Dubey S (2019) Xanthan gum in drug delivery applications. Elesevier, Amsterdam

    Google Scholar 

  43. Badwaik HR, Giri TK, Nakhate KT, Kashyap P, Tripathi DK (2013) Xanthan gum and its derivatives as a potential bio-polymeric carrier for drug delivery system. Curr Drug Deliv 10:587–600

    CAS  PubMed  Google Scholar 

  44. Wade A, Weller PJ (1994) Handbook of Excipients. The American Pharmaceutical Association (USA) and the Pharmaceutical Press, London, pp 223–239

  45. Talukdar MM, Kinget R (1995) Swelling and drug release behaviour of xanthan gum matrix tablets. Int J Pharm 120:63–72

    CAS  Google Scholar 

  46. Sujja-areevath J, Munday DL, Cox PJ, Khan KA (1996) Release characteristics of diclofenac sodium from encapsulated natural gum mini-matrix formulations. Int J Pharm 139:53–62

    CAS  Google Scholar 

  47. Santos H, Veiga F, Pina ME, Sousa JJ (2005) Compaction, compression and drug release properties of diclofenac sodium and ibuprofen pellets comprising xanthan gum as a sustained release agent. Int J Pharm 295:15–27

    CAS  PubMed  Google Scholar 

  48. Liu Z, Yao P (2015a) Injectable thermo-responsive hydrogel composed of xanthan gum and methylcellulose double networks with shear-thinning property. Carbohydr Polym 132:490–498

    CAS  PubMed  Google Scholar 

  49. Stokke BT, Smidsrød O, Elgsaeter A (1989) Electron microscopy of native xanthan and xanthan exposed to low ionic strength. Biopolymers 28:617–637

    CAS  Google Scholar 

  50. Liu Z, Yao P (2015b) Injectable shear-thinning xanthan gum hydrogel reinforced by mussel-inspired secondary crosslinking. RSC Adv 5:103292–103301

    CAS  Google Scholar 

  51. Bresolin TM, Milas M, Rinaudo M, Ganter JLM (1998) Xanthan–galactomannan interactions as related to xanthan conformations. Int J Biol Macromol 23:263–275

    CAS  PubMed  Google Scholar 

  52. Giannouli P, Morris ER (2003) Cryogelation of xanthan. Food Hydrocoll 17:495–501

    CAS  Google Scholar 

  53. Gao L, Dai W, Chen J, Xie Z, Yue X (2017) Enhanced electro-responsive behaviors of agar/xanthan gum interpenetrating compound hydrogel. Soft Mater 15:163–172

    CAS  Google Scholar 

  54. Carafa M, Marianecci C, Di Marzio L, Rinaldi F, Di Meo C, Matricardi P, Alhaique F, Coviello T (2011) A new vesicle-loaded hydrogel system suitable for topical applications: preparation and characterization. J Pharm Pharm Sci 14:336–346

    PubMed  Google Scholar 

  55. Martínez-Ruvalcaba A, Chornet E, Rodrigue D (2007) Viscoelastic properties of dispersed chitosan/xanthan hydrogels. Carbohydr Polym 67:586–595

    Google Scholar 

  56. Li G, Wu J, Wang B, Yan S, Zhang K, Ding J, Yin J (2015) Self-healing Supramolecular self-assembled hydrogels based on poly(l-glutamic acid). Biomacromolecules 16:3508–3518

    CAS  PubMed  Google Scholar 

  57. Li F, Zhu Y, You B, Zhao D, Ruan Q, Zeng Y, Ding C (2010) Smart hydrogels co-switched by hydrogen bonds and π-π stacking for continuously regulated controlled-release system. Adv Funct Mater 20:669–676

    CAS  Google Scholar 

  58. Shi FK, Wang XP, Guo RH, Zhong M, Xie XM (2015) Highly stretchable and super tough nanocomposite physical hydrogels facilitated by the coupling of intermolecular hydrogen bonds and analogous chemical crosslinking of nanoparticles. J Mater Chem B 3:1187–1192

    CAS  PubMed  Google Scholar 

  59. Malfait WJ, Sanchez-Valle C (2013) Effect of water and network connectivity on glass elasticity and melt fragility. Chem Geol 346:72–80

    CAS  Google Scholar 

  60. Pandey S, Mishra SB (2011a) Graft copolymerization of ethyl acrylate onto xanthan gum, using potassium peroxydisulphate as an initiator. Int J Biol Macromol 49:527–535

    CAS  PubMed  Google Scholar 

  61. Maia AMS, Silva HVM, Curti PS, Balaban RC (2012) Study of the reaction of grafting acrylamide onto xanthan gum. Carbohydr Polym 90:778–783

    CAS  PubMed  Google Scholar 

  62. Pal A, Majumder K, Bandyopadhyay A (2016) Surfactant mediated synthesis of poly(acrylic acid) grafted xanthan gum and its efficient role in adsorption of soluble inorganic mercury from water. Carbohydr Polym 152:41–50

    CAS  PubMed  Google Scholar 

  63. Elella MHA, Mohamed RR, ElHafeez EA, Sabaa MW (2017) Synthesis of novel biodegradable antibacterial grafted xanthan gum. Carbohydr Polym 173:305–311

    PubMed  Google Scholar 

  64. Pandey S, Mishra SB (2012) Microwave synthesized xanthan gum-g-poly(ethylacrylate): an efficient Pb2+ ion binder. Carbohydr Polym 90:370–379

    CAS  PubMed  Google Scholar 

  65. Pandey S, Ramontja J (2016a) Turning to nanotechnology for water pollution control: applications of nanocomposites. Focus Sci 2:1–10

    Google Scholar 

  66. Singh V, Kumari PL, Tiwari A, Pandey S (2010) Alumina supported microwave synthesis of Cassia marginata seed gum-graft-poly(acrylamide). J Appl Polym 117:3630–3638

    CAS  Google Scholar 

  67. Singh V, Tiwari A, Pandey S, Singh SK (2007) Peroxydisulfate initiated synthesis of potato starch-graft- poly(acrylonitrile) under microwave irradiation. Xpress Polym Lett 1:51–58

    CAS  Google Scholar 

  68. Singh V, Tiwari A, Pandey S, Singh SK (2006) Microwave accelerated synthesis and characterization of potato starch-g-poly (acrylamide). Starch-Starke 58:536–543

    CAS  Google Scholar 

  69. Wang JP, Chen YZ, Zhang SJ, Yu HQ (2008) A chitosan-based flocculant prepared with gamma-irradiation-induced grafting. Bioresour Technol 99:3397–3402

    CAS  PubMed  Google Scholar 

  70. Deng J, Wang L, Liu L, Yang W (2009) Developments and new applications of UV-induced surface graft polymerizations. Prog Polym Sci 34:156–193

    CAS  Google Scholar 

  71. Shanmugharaj AM, Kim JK, Ryu SH (2006) Modification of rubber surface by UV surface grafting. Appl Surf Sci 252:5714–5722

    CAS  Google Scholar 

  72. Da Silva DA, De Paula RCM, Feitosa JPA (2007) Graft copolymerization of acrylamide onto cashew gum. Eur 43:2620–2629

    Google Scholar 

  73. Singh V, Tiwari S, Pandey S, Preeti Sanghi R (2015) Cassia grandis seed gum graft poly(acrylamide)-silica hybrid: an excellent cadmium (II) adsorbent. Adv Mater Lett 6:19–26

    Google Scholar 

  74. Singh V, Pandey S, Singh SK, Sanghi R (2009) Removal of cadmium from aqueous solutions by adsorption poly(acrylamide) modified guar gum-silica nanocomposites. Sep Purif Technol 67:251–261

    CAS  Google Scholar 

  75. Sutirman ZA, Sanagi MM, Karim KJA, Ibrahim WAW (2016) Preparation of methacrylamide-functionalized crosslinked chitosan by free radical polymerization for the removal of lead ions. Carbohydr Polym 151:1091–1099

    CAS  PubMed  Google Scholar 

  76. Sorour M, El-Sayed M, El Moneem NA, Talaat H, Shaalan H, El Marsafy S (2013) Free radical grafting kinetics of acrylamide onto a blend of starch/chitosan/alginate. Carbohydr Polym 98:460–464

    CAS  PubMed  Google Scholar 

  77. Zhang LM, Tan YB, Huang SJ, Chen DQ, Li ZM (2000) Water soluble ampholytic grafted polysaccharides. 1. Grafting of the zwitter ionic monomer 2-(2- methacryloethyl dimethyl ammonio) ethanoate onto hydroxyethyl cellulose. J Polym Sci A Polym Chem 37:1247–1260

    Google Scholar 

  78. Pandey S, Mishra SB (2011b) Organic-inorganic hybrid of chitosan/organoclay bionanocomposites for hexavalent chromium uptake. J Colloid Interface Sci 361:509–520

    CAS  PubMed  Google Scholar 

  79. Pandey S, Mishra SB (2011c) Sol-gel derived organic-inorganic hybrid materials: synthesis, characterizations and applications. JSST 59:73–94

    CAS  Google Scholar 

  80. Behari K, Pandey P, Kumar R, Taunk K (2001) Graft copolymerization of acrylamide onto xanthan gum. Carbohydr Polym 46:185–189

    CAS  Google Scholar 

  81. Kumar R, Srivastava A, Behari K (2007) Graft copolymerization of methacrylic acid onto xanthan gum by Fe2+/H2O2 redox initiator. J Appl Polym 105:1922–1929

    CAS  Google Scholar 

  82. Srivastava A, Behari K (2009) Modification of natural polymer via free radical graft copolymerization of 2-acrylamido-2-methyl-1-propane sulfonic acid in aqueous media and study of swelling and metal ion sorption behaviour. J Appl Polym 114:1426–1434

    CAS  Google Scholar 

  83. Sand A, Yadav M, Behari K (2010) Graft copolymerization of 2-Acrylamidoglycolic acid on to xanthan gum and study of its physicochemical properties. Carbohydr Polym 81:626–632

    CAS  Google Scholar 

  84. Kumar R, Srivastava A, Behari K (2009) Synthesis and characterization of polysaccharide based graft copolymer by using potassium peroxymonosulphate/ascorbic acid as an efficient redox initiator in inert atmosphere. J Appl Polym 112:1407–1415

    CAS  Google Scholar 

  85. Badwaik HR, Sakure K, Alexander A, Ajazuddin Dhongade H, Tripathi DK (2016) Synthesis and characterisation of poly(acryalamide) grafted carboxymethyl xanthan gum copolymer. Int J Biol Macromol 85:361–369

    CAS  PubMed  Google Scholar 

  86. Hanna DH, Saad GR (2018) Encapsulation of ciprofloxacin within modified xanthan gum- chitosan based hydrogel for drug delivery. Bioorg Chem 84:115–124

    PubMed  Google Scholar 

  87. Trombino S, Serini S, Cassano R, Calviello G (2019) Xanthan gum-based materials for omega-3 PUFA delivery: preparation, characterization and antineoplastic activity evaluation. Carbohydr Polym 208:431–440

    CAS  PubMed  Google Scholar 

  88. Zheng M, Lian F, Zhu Y, Liu B, Chen Z, Zhang Y, Zheng B, Zhang L (2019) Modified xanthan gum for crystal violet uptake: kinetic, isotherm, and thermodynamic behaviours. Water Sci Technol 79:165–174

    CAS  PubMed  Google Scholar 

  89. Gils PS, Ray D, Sahoo PK (2009) Characteristics of xanthan gum-based biodegradable superporous hydrogel. Int J Biol Macromol 45:364–371

    CAS  PubMed  Google Scholar 

  90. Shalviri A, Liu Q, Abdekhodaie MJ, Wu XY (2010) Novel modified starch–xanthan gum hydrogels for controlled drug delivery: synthesis and characterization. Carbohydr Polym 79:898–907

    CAS  Google Scholar 

  91. Zhang S, Xu F, Wang Y, Zhang W, Peng X, Pepe F (2013) Silica modified calcium alginate–xanthan gum hybrid bead composites for the removal and recovery of Pb(II) from aqueous solution. Chem Eng J 234:33–42

    CAS  Google Scholar 

  92. Pal A, Majumder K, Sengupta S, Das T, Bandyopadhyay A (2017) Adsorption of soluble Pb(II) by a photocrosslinked polysaccharide hybrid: a swelling-adsorption correlation study. Carbohydr Polym 177:144–155

    CAS  PubMed  Google Scholar 

  93. Makhado E, Pandey S, Nomngongo PN, Ramontja J (2018a) Preparation and characterization of xanthan gum-cl-poly(acrylic acid)/o-MWCNTs hydrogel nanocomposite as highly effective re-usable adsorbent for removal of methylene blue from aqueous solutions. J Colloid Interface Sci 513:700–714

    CAS  PubMed  Google Scholar 

  94. Makhado E, Pandey S, Ramontja J (2018b) Microwave assisted synthesis of xanthan gum-cl-poly (acrylic acid) based-reduced graphene oxide hydrogel composite for adsorption of methylene blue and methyl violet from aqueous solution. Int J Biol Macromol 119:255–269

    CAS  PubMed  Google Scholar 

  95. Chaudhary S, Sharma J, Kaith BS, yadav S, Sharma AK, Goel A (2018) Gum xanthan-psyllium-cl-poly(acrylic acid-co-itaconic acid) based adsorbent for effective removal of cationic and anionic dyes: adsorption isotherms, kinetics and thermodynamic studies. Ecotox Environ Safe 149:150–158

  96. Makhado E, Pandey S, Ramontja J (2019) Microwave-assisted green synthesis of xanthan gum grafted diethylamino ethyl methacrylate: an efficient adsorption of hexavalent chromium. Carbohydr Polym 222:1–11

    Google Scholar 

  97. Chen X, Li P, Kang Y, Zeng X, Xie Y, Zhang Y, Wang Y, Xie T (2019) Preparation of temperature-sensitive xanthan/NIPA hydrogel using citric acid as crosslinking agent for bisphenol a adsorption. Carbohydr Polym 206:94–101

    CAS  PubMed  Google Scholar 

  98. Zheng M, Lian F, Zhu Y, Zhang Y, Liu B, Zhang L, Zheng B (2019) pH-responsive poly (xanthan gum-g-acrylamide-g-acrylic acid) hydrogel: preparation, characterization, and application. Carbohydr Polym 210:38–46

    CAS  PubMed  Google Scholar 

  99. Ghorai S, Sinhamahpatra A, Sarkar A, Panda AB, Pal S (2012) Panda AB, Pal S, novel biodegradable nanocomposite based on XG-g-PAM/SiO2: application of an efficient adsorbent for Pb2+ ions from aqueous solution. Bioresour Technol 119:181–190

    CAS  PubMed  Google Scholar 

  100. Ghorai S, Sarkar AK, Pal S (2014) Rapid adsorptive removal of toxic Pb 2+ ion from aqueous solution using recyclable, biodegradable nanocomposite derived from templated partially hydrolyzed xanthan gum and nanosilica. Bioresour Technol 170:578–582

    CAS  PubMed  Google Scholar 

  101. Ghorai S, Sarkar AK, Panda AB, Pal S (2013) Effective removal of Congo red dye from aqueous solution using modified xanthan gum/silica hybrid nanocomposite as adsorbent. Bioresour Technol 144:485–491

    CAS  PubMed  Google Scholar 

  102. Mittal H, Parashar V, Mishra SB, Mishra AK (2014) Fe3O4 MNPs and gum xanthan based hydrogels nanocomposites for the efficient capture of malachite green from aqueous solution. Chem Eng J 255:471–482

    CAS  Google Scholar 

  103. Zhang W, Xu F, Wang Y, Luo M, Wang D (2014) Facile control of zeolite NaA dispersion into xanthan gum–alginate binary biopolymer network in improving hybrid composites for adsorptive removal of Co2+ and Ni2+. Chem Eng J 255:316–326

    CAS  Google Scholar 

  104. Peng X, Xu F, Zhang W, Wang J, Zeng C, Niu M, Chmielewská E (2014) Magnetic Fe 3 O 4 @ silica–xanthan gum composites for aqueous removal and recovery of Pb 2+. Colloid Surface A 443:27–36

    CAS  Google Scholar 

  105. Xin J, Han J, Zheng X, Shao H, Kolditz O (2015) Mechanism insights into enhanced trichloroethylene removal using xanthan gum-modified microscale zero-valent iron particles. J Environ Manag 150:420–426

    CAS  Google Scholar 

  106. Mittal H, Kumar V, Saruchi RSS (2016) Adsorption of methyl violet from aqueous solution using gum xanthan/Fe3O4 based nanocomposite hydrogel. Int J Biol Macromol 89:1–11

    CAS  PubMed  Google Scholar 

  107. Aflaki Jalali M, DadvandKoohi A, Sheykhan M (2016) Experimental study of the removal of copper ions using hydrogels of xanthan, 2-acrylamido-2-methyl-1-propane sulfonic acid, montmorillonite: kinetic and equilibrium study. Carbohydr Polym 142:124–132

    CAS  PubMed  Google Scholar 

  108. Ahmad R, Mirza A (2017) Green synthesis of xanthan gum/methionine-bentonite nanocomposite for sequestering toxic anionic dye.J surf 8:65-72

  109. Thakur S, Pandey S, Arotiba OA (2017), Sol-gel derived xanthan gum/silica nanocomposite—a highly efficient cationic dyes adsorbent in aqueous system. Int J Biol Macromol103:596–604

  110. Ahmad R, Mirza A (2018a) Adsorptive removal of heavy metals and anionic dye from aqueous solution using novel xanthan gum-glutathione/ zeolite bionanocomposite. Groundw Sustain Dev 7:305–312

    Google Scholar 

  111. Inamuddin (2018) Xanthan gum/titanium dioxide nanocomposite for photocatalytic degradation of methyl orange dye. Int J Biol Macromol121: 1046–1053

  112. Ahmad R, Mirza A (2018b) Application of xanthan gum/ n-acetyl cysteine modified mica bionanocomposite as an adsorbent for the removal of toxic heavy metals. Groundw Sustain Dev 7:101–108

    Google Scholar 

  113. Mirza A, Ahmad R (2018) Novel recyclable (xanthan gum/montmorillonite) bionanocomposite for the removal of Pb (II) from synthetic and industrial wastewater. Environ Technol Inno 11:241–252

    Google Scholar 

  114. Badalamoole V, AbubakarZauro S (2018) Absorptive removal of Cu2+ and Pb2+ from aqueous solutions using xanthan gum-g-poly[(N,N′-dimethylacrylamide)-co-(2-acrylamido-2-methylpropanesulfonic acid)]–ZnO nanocomposite gel. Sep Sci Technol 54:2164–2179

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhiraj Sud.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, A., Singh, D. & Sud, D. A review on grafted, crosslinked and composites of biopolymer Xanthan gum for phasing out synthetic dyes and toxic metal ions from aqueous solutions. J Polym Res 27, 297 (2020). https://doi.org/10.1007/s10965-020-02271-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02271-6

Keywords

Navigation