Skip to main content

Advertisement

Log in

Biogenic Synthesis of Rod Shaped ZnO Nanoparticles Using Red Paprika (Capsicum annuum L. var. grossum (L.) Sendt) and Their in Vitro Evaluation

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Metal oxide nanoparticles (NPs) have gained attention in biomedicine due to their broad spectrum of applications, such as targeted drug delivery, their use as antibacterial agents or in cancer treatments. In particular, zinc oxide nanoparticles (ZnO NPs) have become one of the most popular metal oxide NPs in biomedical applications. The present study describes for the first time the biogenic synthesis of rod shaped ZnO NPs using C. annuum L. var. grossum (L.) Sendt) extract as a capping agent. The purified C. annum-based zinc oxide nanorods (Ca-ZnO NRs) were characterized by different physico-chemical techniques. UV–vis spectroscopy depicted the absorbance peak at 372 nm. The size of nanorods ranges between 70 and 80 nm as revealed by FE-TEM micrographs and the mean size was 72 nm. Ca-ZnO NRs exhibited antibacterial activity in a dose-dependent manner and a greater activity was observed against S. enterica. Ca-ZnO NRs have shown antioxidant activity (91%) at 100 μg ml−1 when compared to the standard (ascorbic acid) (98%). A significant inhibition of bovine serum albumin (BSA) protein denaturation evidenced their anti-inflammatory property. Further, Ca-ZnO NRs showed hemolysis of red blood cells (RBC) (~ 3%) (up to 3 μg ml−1) which is much lesser than permissible limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K. Sobha, K. Surendranath, and V. Meena (2010). Biotechnol. Mol. Biol. Rev. 5, 1–12.

    CAS  Google Scholar 

  2. M. Stan, A. Popa, D. Toloman, A. Dehelean, I. Lung, and G. Katona (2015). Mater. Sci. Semicond. Process. 39, 23–29.

    Article  CAS  Google Scholar 

  3. M. Murali, C. Mahendra, N. Rajashekar, and M. S. Sudarshana (2017). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 179, 104–109.

    Article  CAS  Google Scholar 

  4. O. Mahian, L. Kolsi, M. Amani, P. Estellé, G. Ahmadi, C. Kleinstreuer, J. S. Marshall, R. A. Taylor, E. Abu-Nada, S. Rashidi, H. Niazmand, S. Wongwises, T. Hayat, A. Kasaeian, and I. Pop (2019). Phys. Rep. 791, 1–59.

    Article  CAS  Google Scholar 

  5. S. Rostamnia and E. Doustkhah (2014). RSC Adv. 4, 28238–28248.

    Article  CAS  Google Scholar 

  6. S. Gunalan, R. Sivaraj, and V. Rajendran (2013). Prog. Nat. Sci. Mater. Int. 22, 693–700.

    Article  Google Scholar 

  7. Q. Yuan, S. Hein, and R. D. K. Misra (2010). Acta Biomater. 6, 2732–2739.

    Article  PubMed  CAS  Google Scholar 

  8. X. Huang, X. Zheng, Z. Xu, and C. Yi (2017). Int. J. Pharm. 534, 190–194.

    Article  PubMed  CAS  Google Scholar 

  9. M. Zare, K. Namratha, K. Byrappa, D. M. Surendrab, S. Yallappac, and B. Hungund (2018). J. Mater. Sci. Technol. 34, 1035–1043.

    Article  Google Scholar 

  10. A. Krol, P. Pomastowski, K. Rafińska, V. Raileanplugaru, and B. Buszewski (2017). Adv. Colloid Interface Sci. 249, 37–52.

    Article  PubMed  CAS  Google Scholar 

  11. S. Preeti and N. Vijay (2017). Int. J. Life Sci. 5, 233–240.

    Google Scholar 

  12. Ö. A. Yıldırım and C. Durucan (2010). J. Alloys Compd. 506, 944–949.

    Article  CAS  Google Scholar 

  13. E. Darezereshki, M. Alizadeh, F. Bakhtiari, M. Schaffie, and M. Ranjbar (2011). Appl. Clay Sci. 54, 107–111.

    Article  CAS  Google Scholar 

  14. H. Gu, Y. Yang, J. Tian, and G. Shi (2013). ACS Appl. Mater. Interfaces. 5, 6762–6768.

    Article  PubMed  CAS  Google Scholar 

  15. K. G. Chandrappa and T. V. Venkatesha (2012). Nano-Micro Lett. 4, 14–24.

    Article  CAS  Google Scholar 

  16. Y. Esqueda-Barrón, M. Herrera, and S. Camacho-López (2018). Appl. Surf. Sci. 439, 681–688.

    Article  CAS  Google Scholar 

  17. E. Muchuweni, T. S. Sathiaraj, and H. Nyakotyo (2017). Heliyon 3, E00285.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. M. S. Shekhawat, C. P. Ravindran, and M. Manokari (2014). Trop. Plant Res. 1, 55–59.

    Google Scholar 

  19. B. Buszewski, V. Railean-Plugaru, P. Pomastowski, K. Rafinska, M. Szultka-Mlynska, and T. Kowalkowski (2017). Curr. Pharm. Biotechnol. 18, 168–176.

    Article  PubMed  CAS  Google Scholar 

  20. M. Premanathan, K. Karthikeyan, K. Jeyasubramanian, and G. Manivannan (2011). Nanomed. Nanotechnol. Biol. Med. 7, 184–192.

    Article  CAS  Google Scholar 

  21. L.-E. Shi, Z.-H. Li, W. Zheng, Y.-F. Zhao, Y.-F. Jin, and Z.-X. Tang (2014). Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 31, 173–186.

    Article  PubMed  CAS  Google Scholar 

  22. S. Vijayakumar, B. Vaseeharan, B. Malaikozhundan, and M. Shobiya (2016). Biomed. Pharmacother. 84, 1213–1222.

    Article  PubMed  CAS  Google Scholar 

  23. B. Malaikozhundan, B. Vaseeharan, S. Vijayakumar, K. Pandiselvi, M. A. Raja Mohamed Kalanjiam, K. Murugan, and G. Benelli (2017). Microb. Pathog. 104, 268–277.

    Article  PubMed  CAS  Google Scholar 

  24. S. Vijayakumar, B. Vaseeharan, B. Malaikozhundan, M. Divya, M. Abhinaya, N. Gobi, A. Bhattacharyya, N. Balashanmugam, D. Surmistha, K. Murugan, and G. Benelli (2017). Limnologica 67, 1–6.

    Article  CAS  Google Scholar 

  25. H. Padalia and S. Chanda (2017). Artif. Cells Nanomed. Biotechnol. 45, 1–14.

    Article  CAS  Google Scholar 

  26. C. H. Jeong, W. H. Ko, J. R. Cho, C. G. Ahn, and K. H. Shim (2006). Korean J. Food Preserv. 13, 43–49.

    Google Scholar 

  27. J.E. Eong, W. Kim, S. Kim, S. Yun and Munwonsa (2008) Korea: Korea Rural Econ. Inst. 2008–2022.

  28. I. Domínguez-Martínez, O. G. Meza-Márquez, G. Osorio-Revilla, J. Proal-Nájera, and T. Gallardo-Velázquez (2014). J. Korean Soc. Appl. Biol. Chem. 57, 133–142.

    Article  CAS  Google Scholar 

  29. S. Quideau, D. Deffieux, C. Douat-Casassus, and L. Pouységu (2011). Angew. Chem. 50, 586–621.

    Article  CAS  Google Scholar 

  30. S. Oshima, H. Sakamoto, Y. Ishiguro, and J. Terao (1997). J. Nutr. 127, 1475–1479.

    Article  PubMed  CAS  Google Scholar 

  31. A. Bendich and J. A. Olson (1989). FASEB J. 3, 1927–1932.

    Article  PubMed  CAS  Google Scholar 

  32. T. Maoka, F. Enjo, H. Tokuda, and H. Nishino (2004). Foods Food Ingred. J. Jpn. 209, 203–210.

    CAS  Google Scholar 

  33. B. Ankamwar, M. Chaudhary, and M. Sastry (2005). MetalOrg. Nano Metal Chem. 35, 19–26.

    Article  CAS  Google Scholar 

  34. CLSI, Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically (2012). 32, 69.

  35. S. Vijayakumar and B. Vaseeharan (2018). Adv. Powd. Technol. 29, 2331–2345.

    Article  CAS  Google Scholar 

  36. S. Vijayakumar, B. Malaikozhundan, K. Saravanakumar, E. F. DuránLara, M. H. Wang, and B. Vaseeharan (2019). J. Photochem. Photobiol. B. 198, 58.

    Article  CAS  Google Scholar 

  37. G. Rajakumar, M. Thiruvengadam, G. Mydhili, T. Gomathi, and I.-M. Chung (2018). Bioprocess Biosyst. Eng. 41, 21–30.

    Article  PubMed  CAS  Google Scholar 

  38. R. K. Dey and A. R. Ray (2003). Biomaterials 24, 2985–2993.

    Article  PubMed  CAS  Google Scholar 

  39. Joint Committee on Powder Diffraction Standards Diffraction Data File, JCPDS International Center for Diffraction Data No. (1991). 36-1451

  40. J. Ali, R. Irshad, B. Li, K. Tahir, A. Ahmad, M. Shakeel, N. U. Khan, and Z. U. Khan (2018). J. Photochem. Photobiol. B 183, 349–356.

    Article  PubMed  CAS  Google Scholar 

  41. G. Sharmila, M. Thirumarimurugan, and C. Muthukumaran (2019). Micro Chem. J. 145, 578–587.

    CAS  Google Scholar 

  42. C. Li, H. Zhang, X. Gong, Q. Li, and X. Zhao (2019). Colloids Surf. B Biointerfaces. 174, 476–482.

    Article  PubMed  CAS  Google Scholar 

  43. S. Davaeifar, M. H. Modarresi, M. Mohammadi, E. Hashemi, M. Shafiei, H. Maleki, H. Valie, H. S. Zahiri, and K. A. Noghabi (2019). Colloids Surf. B Biointerfaces 175, 221–230.

    Article  PubMed  CAS  Google Scholar 

  44. T. Wilkins, L. V. Holdeman, I. Abramson, and W. Moore (1972). Antimicrob. Agents Chemother. 1, 451–459.

    Article  PubMed Central  CAS  Google Scholar 

  45. M.S. Naqvi, R.S. Braj, A.K. Javed, K. Washi, N.S. Brahma, HBS and H. Alim (2013). Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 35015. http://stacks.iop.org/2043-6262/4/i=3/a=035015.

  46. A. Iswaryaa, B. Vaseeharan, M. Anjugam, B. Ashokkumar, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benellie (2017). Colloids Surf. B Biointerfaces. 158, 257–269.

    Article  CAS  Google Scholar 

  47. M. A. Rauf, S. Zubair, H. Ateeq, K. Dabeer, S. Pachauri, M. Ajmal, and M. Owais (2018). Front. Microbiol. 9, 586.

    Article  PubMed  PubMed Central  Google Scholar 

  48. M. Divya, B. Vaseeharan, M. Abinaya, S. Vijayakumar, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2018). J. Photochem. Photobiol. B. 178, 211–218.

    Article  PubMed  CAS  Google Scholar 

  49. E. A. Decker (1998). Trends Food Sci. Technol. 9, 241–248.

    Article  CAS  Google Scholar 

  50. D. Suresh, P. C. Nethravathi, H. Rajanaika, H. Nagabhushana, and S. C. Sharma (2015). Mater. Sci. Semicond. Process. 31, 446–454.

    Article  CAS  Google Scholar 

  51. S. Ram Prasad, K. Elango, S. Daisy Chellakumari, and S. Dharani (2013). Res. J. Pharma. Dosage Forms Tech. 5, 161–167.

    Google Scholar 

  52. M. K. Uchiyama, D. K. Deda, S. F. De Paula Rodrigues, C. C. Drewes, S. M. Bolonheis, P. K. Kiyohara, S. P. De Toledo, W. Colli, K. Araki, and S. H. P. Farsky (2014). Toxicol. Sci. 142, 497–507.

    Article  PubMed  CAS  Google Scholar 

  53. K.-Y. Lu, P.-Y. Lin, E.-Y. Chuang, C.-M. Shih, T.-M. Cheng, T.-Y. Lin, H.-W. Sung, and F.-L. Mi (2017). ACS Appl. Mater. Interfaces. 9, 5158–5172.

    Article  PubMed  CAS  Google Scholar 

  54. G. Angajala, P. Pavan, and R. Subashini (2014). RSC Adv. 4, 51459–51470.

    Article  CAS  Google Scholar 

  55. H. P. Spoorthy, M. G. Archna, N. D. Rekha, and S. Satish (2017). J. Microbiol. Biotech. Res. 7, 1–6.

    CAS  Google Scholar 

  56. M. Ilves, J. Palomäki, M. Vippola, M. Lehto, K. Savolainen, T. Savinko, and H. Alenius (2014). Part. Fibre Toxicol. 11, 38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. P. Thatoi, R. G. Kerry, S. Gouda, G. Das, K. Pramanik, H. Thatoi, and J. K. Patra (2016). J. Photochem. Photobiol. B. 163, 311–318.

    Article  PubMed  CAS  Google Scholar 

  58. J. P. Singhal and A. R. Ray (2002). Biomaterials. 23, 1139–1145.

    Article  PubMed  CAS  Google Scholar 

  59. M. Abinaya, B. Vaseeharan, M. Divya, A. Sharmili, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2018). J. Trace Elem. Med. Biol. 45, 93–103.

    Article  PubMed  CAS  Google Scholar 

  60. Z. Lu, J. Gao, Q. He, J. Wu, D. Liang, H. Yang, and R. Chen (2017). Carbohydr. Polym. 156, 460–469.

    Article  PubMed  CAS  Google Scholar 

  61. N. Martínez-Rodríguez, S. Tavárez, and Z. I. González-Sánchez (2019). Toxicol. In vitro. 57, 54–61.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by Ministry of Agriculture Food and rural Affairs (318077-2). The author KS thanks the Korea Research Fellowship (KRF) Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT (2017H1D3A1A01052610). Prof. Esteban F. Durán-Lara thanks the FONDECYT projects number 11170155. The authors SV, MD and BV thank the RUSA phase 2.0 grant [Ref 24-51-2014-U-policy] TN Multi-Gen. Department of Education, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sekar Vijayakumar or Myeong-Hyeon Wang.

Ethics declarations

Conflicts of Interest

The authors have declared that no conflicting interests exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 871 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayakumar, S., González-Sánchez, Z.I., Malaikozhundan, B. et al. Biogenic Synthesis of Rod Shaped ZnO Nanoparticles Using Red Paprika (Capsicum annuum L. var. grossum (L.) Sendt) and Their in Vitro Evaluation. J Clust Sci 32, 1129–1139 (2021). https://doi.org/10.1007/s10876-020-01870-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01870-z

Keywords

Navigation