Skip to main content
Log in

Gold Spherical and Flake Assemblies Fabrication Through Calcination of Gold Nanoparticles Incorporated Poly(acrylonitrile) Nanofibers

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

This work reports on the outcome of the calcination of gold nanoparticles incorporated polyacrylonitrile nanofibers in air which results in the formation of gold spherical and flake cluster assemblies. The architecture and morphology of gold nanostructures play a role in determining their different applications. The results of this research showed that calcination at 650 °C for 5 h led to almost complete disintegration and disappearance of the poly(acrylonitrile) matrix and polyhedral nanostructures were formed. FTIR analysis showed the complete disappearance of poly(acrylonitrile) matrix at calcination temperatures of 850 °C and 1000 °C. XRD analysis also showed the complete disappearance of poly(acrylonitrile) at calcination temperatures above 850 °C. SEM micrographs taken after calcination of the precursor showed that calcination around 850 °C leads to the formation of spherical gold clusters, whereas, calcination at 1000 °C produces gold flake clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. B. Cortie (2004). Gold Bull. 37, 12–19.

    Article  CAS  Google Scholar 

  2. W. Chang, S. Liu, A. Qileng, W. Liu, and Y. Liu (2018). Mater. Res. Express. 6, 015002.

    Article  CAS  Google Scholar 

  3. F. Sahebi, M. Ranjbar, and M. T. Goodarzi (2019). Appl Phys A 12, (125), 850.

    Article  CAS  Google Scholar 

  4. S. Salmaso, P. Caliceti, V. Amendola, M. Meneghetti, J. P. Magnusson, G. Pasparakis, and C. Alexander (2009). J Mater Chem C 19, 1608–1615.

    Article  CAS  Google Scholar 

  5. J. Xie, Y. Zheng, and J. Y. Ying (2009). J Am Chem Soc 131, 888–889.

    Article  PubMed  CAS  Google Scholar 

  6. A. U. Rahman, Y. Wei, A. Ahmad, A. U. Khan, R. Ali, S. Ullah, W. Ahmad, and Q. Yuan (2020). J Clust Sci 31, 727–737.

    Article  CAS  Google Scholar 

  7. D. Seo, J. C. Park, and H. Song (2006). J Am Chem Soc 128, 14863–14870.

    Article  PubMed  CAS  Google Scholar 

  8. Y. Gu, C. Li, J. Bai, Y. Zhang, and J. Wang (2016). J Clust Sci 27, 1147–1158.

    Article  CAS  Google Scholar 

  9. A. Muthurasu and H. Y. Kim (2018). Electrochim Acta 283, 1425–1431.

    Article  CAS  Google Scholar 

  10. A. S. Shamsabadi, H. Tavanai, M. Ranjbar, A. Farnood, and M. Bazarganipour (2020). Mater Today Commun 24, 100963.

    Article  CAS  Google Scholar 

  11. V. Ramesh and A. Armash (2015). IJPR 5, 250–256.

    Google Scholar 

  12. H. Barabadi, H. Vahidi, K. Damavandi Kamali, M. Rashedi, O. Hosseini, and M. Saravanan (2020). J Clust Sci 31, 651–658.

    Article  CAS  Google Scholar 

  13. M. A. El-Sayed (2001). Acc Chem Res 34, 257–264.

    Article  PubMed  CAS  Google Scholar 

  14. V. Guieu, F. Lagugné-Labarthet, L. Servant, D. Talaga, and N. Sojic (2008). Small 4, 96–99.

    Article  PubMed  CAS  Google Scholar 

  15. J. H. Kim, T. Kang, S. M. Yoo, S. Y. Lee, B. Kim, and Y. K. Choi (2009). Nanotechnology 20, 235302.

    Article  PubMed  CAS  Google Scholar 

  16. W. Ye, D. Wang, H. Zhang, F. Zhou, and W. Liu (2010). Electrochim Acta 55, 2004–2009.

    Article  CAS  Google Scholar 

  17. H. Zhu, M. Du, M. Zhang, M. Zou, T. Yang, L. Wang, J. Yao, and B. Guo (2014). J Mater Chem A 2, 11728–11741.

    Article  CAS  Google Scholar 

  18. Y. Zhang, W. Chu, A. D. Foroushani, H. Wang, D. Li, J. Liu, C. J. Barrow, X. Wang, and W. Yang (2014). Materials 7, 520–5169.

    Google Scholar 

  19. V. Amendola, S. Polizzi, and M. Meneghetti (2006). J Phys Chem B 110, 7232–7237.

    Article  PubMed  CAS  Google Scholar 

  20. Z. Guo, Y. Zhang, Y. DuanMu, L. Xu, S. Xie, and N. Gu (2006). Colloids Surf A Physicochem Eng Asp 278, 33–38.

    Article  CAS  Google Scholar 

  21. B. Plowman, S. J. Ippolito, V. Bansal, Y. M. Sabri, A. P. O’Mullane, and S. K. Bhargava (2009). ChemComm 15, 5039–5041.

    Google Scholar 

  22. Y. Tao, Y. Lin, Z. Huang, J. Ren, and X. Qu (2013). Adv Mater 25, 2594–2599.

    Article  PubMed  CAS  Google Scholar 

  23. O. Vidoni, S. Neumeier, N. Bardou, J. L. Pelouard, and G. Schmid (2003). J Clust Sci 14, 325–336.

    Article  CAS  Google Scholar 

  24. V. W. Ng, R. Berti, F. Lesage, and A. Kakkar (2013). J Mater Chem B 1, 9–25.

    Article  PubMed  CAS  Google Scholar 

  25. B. Wiley, Y. Sun, J. Chen, H. Cang, Z.-Y. Li, X. Li, and Y. Xia (2005). MRS Bull 30, 356–361.

    Article  CAS  Google Scholar 

  26. Y. Xia, W. Li, C. M. Cobley, J. Chen, X. Xia, Q. Zhang, M. Yang, E. C. Cho, and P. K. Brown (2011). Acc Chem Res 44, 914–924.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Y. Li and G. Shi (2005). J Phys Chem B 109, 23787–23793.

    Article  PubMed  CAS  Google Scholar 

  28. A. Ghosh, P. Guha, A. K. Samantara, B. K. Jena, R. Bar, S. Ray, and P. V. Satyam (2015). ACS Appl Mater Interfaces 7, 9486–9496.

    Article  PubMed  CAS  Google Scholar 

  29. M.R. Monfared, H. Tavanai, A. Abdolmaleki, M. Morshed, A.S. Shamsabadi (2019). Mater. Res. Express. 6, 0950c0952.

  30. X. Wang, T. Yang, X. Li, and K. Jiao (2011). Biosens Bioelectron 26, 2953–2959.

    Article  PubMed  CAS  Google Scholar 

  31. J. H. Kim, G. Kang, Y. Nam, and Y. K. Choi (2010). Nanotechnology 21, 085303.

    Article  CAS  Google Scholar 

  32. T. K. Sau and C. J. Murphy (2004). J Am Chem Soc 126, 8648–8649.

    Article  PubMed  CAS  Google Scholar 

  33. F. Kim, S. Connor, H. Song, T. Kuykendall, and P. Yang (2004). Angew Chem Int Ed 43, 3673–3677.

    Article  CAS  Google Scholar 

  34. M. Koperuncholan and M. Manogaran (2015). World J Pharm Res 4, 1757–1775.

    CAS  Google Scholar 

  35. U. Bhanu, M. R. Islam, L. Tetard, and S. I. Khondaker (2014). Sci Rep 4, 5575.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. H. Du Nguyen, T. T. L. Nguyen, K. M. Nguyen, A. M. Nguyen, and Q. H. Nguyen (2015). Anal Chem Res 5, 14–20.

    Article  CAS  Google Scholar 

  37. H. Du Nguyen, T. T. L. Nguyen, K. M. Nguyen, T. A. T. Tran, A. M. Nguyen, and Q. H. Nguyen (2015). Am J Analyt Chem 6, 457.

    Article  CAS  Google Scholar 

  38. Y. Gong, A. G. Joly, P. Z. El-Khoury, and W. P. Hess (2015). SPIE 28, 95470H.

    Google Scholar 

  39. H. Wu, R. Zhang, X. Liu, D. Lin, and W. Pan (2007). Chem Mater 19, 3506–3511.

    Article  CAS  Google Scholar 

  40. Z. Wang, Z. Li, L. Liu, X. Xu, H. Zhang, W. Wang, W. Zheng, and C. Wang (2010). J Am Ceram Soc 93, 634–637.

    Article  CAS  Google Scholar 

  41. H.q. Liu, X.l. Yu, B. Cai, S.j. You, Z.b. He, Q.q. Huang, L. Rao, S.s. Li, C. Liu, W.w. Sun (2015). Appl. Phys. Lett. 106, 093703

  42. W. Zheng, Z. Li, H. Zhang, W. Wang, Y. Wang, and C. Wang (2009). Mater Res Bull 44, 1432–1436.

    Article  CAS  Google Scholar 

  43. L. Yang, X. Li, Y. Ouyang, Q. Gao, L. Ouyang, R. Hu, J. Liu, and M. Zhu (2016). ACS Appl Mater Interfaces 8, 19987–19993.

    Article  PubMed  CAS  Google Scholar 

  44. G. Yang, W. Yan, Q. Zhang, S. Shen, and S. Ding (2013). Nanoscale 5, 12432–12439.

    Article  PubMed  CAS  Google Scholar 

  45. N. A. Barakat, B. Kim, and H. Y. Kim (2009). J Phys Chem C. 113, 531–536.

    Article  CAS  Google Scholar 

  46. W. Wang, L. Zhang, S. Tong, X. Li, and W. Song (2009). Biosens Bioelectron 25, 708–714.

    Article  PubMed  CAS  Google Scholar 

  47. P. C. Hsu, H. Wu, T. J. Carney, M. T. McDowell, Y. Yang, E. C. Garnett, M. Li, L. Hu, and Y. Cui (2012). ACS Nano 6, 5150–5156.

    Article  PubMed  CAS  Google Scholar 

  48. S. Dadvar, H. Tavanai, and M. Morshed (2012). J Anal Appl Pyrolysis 98, 98–105.

    Article  CAS  Google Scholar 

  49. J. Huang, B. Zhang, Y. Y. Xie, W. W. K. Lye, Z. L. Xu, S. Abouali, M. A. Garakani, J. Q. Huang, T. Y. Zhang, and B. Huang (2016). Carbon 100, 329–336.

    Article  CAS  Google Scholar 

  50. I. S. Chronakis (2005). J Mater Process Technol 167, 283–293.

    Article  CAS  Google Scholar 

  51. M. A. Ali, K. Mondal, C. Singh, and B. D. Malhotra (2015). Nanoscale 7, 7234–7245.

    Article  PubMed  CAS  Google Scholar 

  52. D. Regonini, A. Teloeken, A. Alves, F. Berutti, K. Gajda-Schrantz, C. Bergmann, T. Graule, and F. Clemens (2013). ACS Appl Mater Interfaces 5, 11747–11755.

    Article  PubMed  CAS  Google Scholar 

  53. J. Cao, T. Zhang, F. Li, H. Yang, and S. Liu (2013). New J Chem 37, 2031–2036.

    Article  CAS  Google Scholar 

  54. G. Yang, W. Yan, J. Wang, Q. Zhang, and H. Yang (2014). J Solgel Sci Technol 71, 159–167.

    Article  CAS  Google Scholar 

  55. A. Mahapatra, B. Mishra, and G. Hota (2013). Ind Eng Chem Res 52, 1554–1561.

    Article  CAS  Google Scholar 

  56. A. S. Shamsabadi, M. Ranjbar, H. Tavanai, and A. Farnood (2019). Mater Res Express 6, 055051.

    Article  CAS  Google Scholar 

  57. E. F. Chaúque, L. N. Dlamini, A. A. Adelodun, C. J. Greyling, and J. C. Ngila (2016). Appl Surf Sci 369, 19–28.

    Article  CAS  Google Scholar 

  58. A. G. El-Deen, N. A. Barakat, K. A. Khalil, and H. Y. Kim (2014). New J Chem 38, 198–205.

    Article  CAS  Google Scholar 

  59. S. N. Arshad, M. Naraghi, and I. Chasiotis (2011). Carbon 49, 1710–1719.

    Article  CAS  Google Scholar 

  60. S. Dadvar, H. Tavanai, M. Morshed, and M. Ghiaci (2012). J Chem Eng Data 57, 1456–1462.

    Article  CAS  Google Scholar 

  61. A. S. Shamsabadi, H. Tavanai, M. Ranjbar, and M. Bazrganipour (2019). J Inorg Organomet Polym Mater 3, 695–705.

    Google Scholar 

  62. E. Zussman, X. Chen, W. Ding, L. Calabri, D. Dikin, J. Quintana, and R. Ruoff (2005). Carbon 43, 2175–2185.

    Article  CAS  Google Scholar 

  63. G. Ma, D. Yang, and J. Nie (2009). Polym Adv Technol 20, 147–150.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Mrs. Ameneh Farnood and Mr. Mehdi Torabi Goodarzi for their collaboration in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Tavanai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamsabadi, A.S., Tavanai, H. & Ranjbar, M. Gold Spherical and Flake Assemblies Fabrication Through Calcination of Gold Nanoparticles Incorporated Poly(acrylonitrile) Nanofibers. J Clust Sci 32, 1121–1127 (2021). https://doi.org/10.1007/s10876-020-01882-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01882-9

Keywords

Navigation