Skip to main content
Log in

Control of repair effect and hydrogen embrittlement risk by parameters optimization for BIEM

基于修复效果和氢脆风险控制的双向电迁移参数优化方法

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Bidirectional electromigration rehabilitation (BIEM) is a novel electrochemical rehabilitation method involving the injection of inhibitors into steel bar surface. The BIEM effect and hydrogen embrittlement (HE) risk depend on the electrochemical parameters (current density and duration) and operating condition (stress level and concrete cover thickness) of reinforced concrete structures. Experiments were performed in this study to investigate the relationships between the aforementioned factors. For a small current density group, a linear relationship was established between electric flux and chloride extraction. For a large current density group, the reasonable current density, stress level, and treatment time were obtained. Finally, the querying method of electrochemical parameters combined with treatment time and current density was proposed.

摘要

双向电迁移(BIEM)是一种新型的提升混凝土结构耐久性的电化学修复方法,可以实现除氯阻锈双重目的。但是,双向电迁移技术的修复效果和由此引起的钢筋氢脆风险取决于电化学参数的选择(电流密度和修复时间)和混凝土结构的服役条件(钢筋应力水平和混凝土保护层厚度)。本文通过系统的试验研究了上述因素间的关系:电流密度低于临界析氢电流密度时,无氢脆风险且电通量和除氯效果呈线性关系;当电流密度高于临界析氢电流密度时,电流密度、应力水平和修复时间的增加均会导致氢脆风险的增加。最后,本文建立了基于修复效果和氢脆风险控制的双向电迁移参数查询方法。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHEEWAKET T, JATURAPITAKKU C L, CHALEE W. Initial corrosion presented by chloride threshold penetration of concrete up to 10 year-results under marine site [J]. Construction and Building Materials, 2012, 37: 693–698. DOI: https://doi.org/10.1016/j.conbuildmat.2012.07.061.

    Google Scholar 

  2. LIU Qing-feng, HU Zhi, LU Xian-yang, YANG Jian. Prediction of chloride distribution for offshore concrete based on statistical analysis [J]. Materials, 2020, 13(1): 174. DOI: https://doi.org/10.3390/ma13010174.

    Google Scholar 

  3. ALMUSALLAM A A. Effect of degree of corrosion on the properties of reinforcing steel bars [J]. Construction and Building Materials, 2001, 15: 361–368. DOI: https://doi.org/10.1016/S0950-0618(01)00009-5.

    Google Scholar 

  4. LIU Qing-feng, XIA Jin, EASTERBROOK D, YANG Jian, LI Long-yuan. Three-phase modelling of electrochemical chloride removal from corroded steel-reinforced concrete [J]. Construction and Building Materials, 2014, 70: 410–427. DOI: https://doi.org/10.1016/j.conbuildmat.2014.08.003.

    Google Scholar 

  5. ELSENER B. Long-term durability of electrochemical chloride extraction [J]. Materials and Corrosion, 2008, 59(2): 91–97. DOI: https://doi.org/10.1002/maco.200804165.

    Google Scholar 

  6. UEDA T, KAMEDA T, NANASAWA A. A new electrochemical rehabilitation method for reinforced concrete employing the DFRCC anode system [J]. Separation and Purification Technology, 2011, 79(2): 204–207. DOI: https://doi.org/10.1016/j.seppur.2011.02.027.

    Google Scholar 

  7. ZHU Ji-hua, WEI Liang-liang, WANG Zhao-hua, LIANG Cheng-ke, FANG Yuan, XING Feng. Application of carbon-fiber-reinforced polymer anode in electrochemical chloride extraction of steel-reinforced concrete [J]. Construction and Building Materials, 2016, 120: 275–283. DOI: https://doi.org/10.1016/j.conbuildmat.2016.05.103.

    Google Scholar 

  8. JIN Zu-quan, HOU Dong-shuai, ZHAO Tie-jun. Electrochemical chloride extraction (ECE) based on the high performance conductive cement-based composite anode [J]. Construction and Building Materials, 2018, 173: 149–159. DOI: https://doi.org/10.1016/j.conbuildmat.2018.03.241.

    Google Scholar 

  9. MIRANDA J M, GONZÁLEZ J A, COBO A, OTERO E. Several questions about electrochemical rehabilitation methods for reinforced concrete structures [J]. Corrosion Science, 2006, 48: 2172–2188. DOI: https://doi.org/10.1016/j.corsci.2005.08.014.

    Google Scholar 

  10. SHAN Hong-you, XU Jin-xia, WANG Zhu-yin, JIANG Lin-hua, XU Ning. Electrochemical chloride removal in reinforced concrete structures: Improvement of effectiveness by simultaneous migration of silicate ion [J]. Construction and Building Materials, 2016, 127: 344–352. DOI: https://doi.org/10.1016/j.conbuildmat.2016.09.137.

    Google Scholar 

  11. LIU Qing-feng, FENG Gan-lin, XIA Jin, YANG Jian, LI Long-yuan. Ionic transport features in concrete composites containing various shaped aggregates: A numerical study [J]. Composite Structures, 2018. DOI: https://doi.org/10.1016/j.compstruct.2017.03.088.

  12. CHANG J J. Bond degradation due to the desalination process [J]. Construction and Building Materials, 2003, 17: 281–287. DOI: https://doi.org/10.1016/S0950-0618(02)00113-7.

    Google Scholar 

  13. MAO Li-xuan, HU Zhi, XIA Jin, FENG Gan-lin, AZIM I, YANG Jian, LIU Qing-feng. Multi-phase modelling of electrochemical rehabilitation for ASR and chloride affected concrete composites [J]. Composite Structures, 2019, 207: 176–189. DOI: https://doi.org/10.1016/S0950-0618(02)00113-7.

    Google Scholar 

  14. SIEGWART M, MCFARLAND B J, LYNESS J F, ABU-TAIR A. Application of inhibitors to reduce the hydrogen uptake of steel during electrochemical chloride extraction [J]. Corrosion, 2002, 58(3): 257–266. DOI: https://doi.org/10.5006/1.3279877.

    Google Scholar 

  15. YEIH W, CHANG J J, HUNG C C. Selecting an adequate procedure for the electrochemical chloride removal [J]. Cement and Concrete Research, 2006, 36(3): 562–570. DOI: https://doi.org/10.1016/j.cemconres.2005.12.008.

    Google Scholar 

  16. SIEGWART M, LYNESS J F, MCFARLAND B J, DOYLE G. The effect of electrochemical chloride extraction on pre-stressed concrete [J]. Construction and Building Materials, 2005, 19: 585–594. DOI: https://doi.org/10.1016/j.conbuildmat.2005.01.012.

    Google Scholar 

  17. NAGUMO M. Fundamentals of hydrogen embrittlement [M]. Singapore, 2016. DOI: https://doi.org/10.1007/978-981-10-0161-1

  18. ISHII K, SEKI H, FUKUTE T, IKAWA K. Cathodic protection for prestressed concrete structures [J]. Construction and Building Materials, 1998, 12: 125–132. DOI: https://doi.org/10.1016/S0950-0618(97)00014-7.

    Google Scholar 

  19. KLINOWSKI S, HARTT W H. Qualification of cathodic protection for corrosion control of prestressing tendons in concrete [J]. Special Publications of the Royal Society of Chemistry, 1996, 183: 354–368.

    Google Scholar 

  20. CHALAFTRIS G. Evaluation of aluminium-based coatings for cadmium replacement [D]. Cranfield University, 2003.

  21. HARDIE D, CHARLES E A, LOPEZ A H. Hydrogen embrittlement of high strength pipeline steels [J]. Corrosion Science, 2006, 48(12): 4378–4385. DOI: https://doi.org/10.1016/j.corsci.2006.02.011.

    Google Scholar 

  22. DJUKIC M B, ZERAVCIC V S, BAKIC G, SEDMAK A, RAJICIC B. Hydrogen embrittlement of low carbon structural steel [J]. Procedia Material Science. 2014, 3: 1167–1172. DOI: https://doi.org/10.1016/j.mspro.2014.06.190.

    Google Scholar 

  23. EGGUM T.J. Hydrogen in low carbon steel: Diffusion, effect on tensile properties, and an examination of hydrogen’s role in the initiation of stress corrosion cracking in a failed pipeline [D]. University of Calgary, 2013.

  24. ELSENER B, MOLINA M, BÖHNI H. The electrochemical removal of chlorides from reinforced concrete [J]. Corrosion Science, 1993, 35(5–8): 1563–1570. DOI: https://doi.org/10.1016/0010-938X(93)90385-T.

    Google Scholar 

  25. FAJARDO G, ESCADEILLA G S, ARLIGUIE G. Electrochemical chloride extraction (ECE) from steel-reinforced concrete specimens contaminated by “artificial” sea-water [J]. Corrosion Science, 2006, 48(1): 110–125. DOI: https://doi.org/10.1016/j.corsci.2004.11.015.

    Google Scholar 

  26. ELISA F, HUMBERTO V, MARIA E N, MARIA C B, JOSE M, LUCIANA R, EDUARDA P. Improvement of historic reinforced concrete/mortars by impregnation and electrochemical methods [J]. Cement and Concrete Composites, 2014, 49: 50–58. DOI: https://doi.org/10.1016/j.cemconcomp.2013.12.013.

    Google Scholar 

  27. SAWADA S, PAGE C L, PAGE M M. Electrochemical injection of organic corrosion inhibitors into concrete [J]. Corrosion Science, 2005, 47(8): 2063–2078. DOI: https://doi.org/10.1016/j.corsci.2004.10.001.

    Google Scholar 

  28. SAWADA S, KUBO J, PAGE C L, PAGE M M. Electrochemical injection of organic corrosion inhibitors into carbonated cementitious materials: Part 1. Effects on pore solution chemistry [J]. Corrosion Science, 2007, 49(3): 1186–1204. DOI: https://doi.org/10.1016/j.corsci.2006.06.020.

    Google Scholar 

  29. KUBO J, SAWADA S, PAGEC L, PAGE M M. Electrochemical inhibitor injection for control of reinforcement corrosion in carbonated concrete [J]. Materials and Corrosion, 2008, 59(2): 107–114. DOI: https://doi.org/10.1002/maco.200804161.

    Google Scholar 

  30. XU Chen, JIN Wei-liang, HUANG Nan, WU Hang-tong, LI Zhi-yuan, MAO Jiang-hong. Bidirectional electromigration of a corrosion inhibitor in chloride contaminated concrete [J]. Magazine of Concrete Research, 2016, 68(9): 1–12. DOI: https://doi.org/10.1680/jmacr.15.00121.

    Google Scholar 

  31. NMAI C K. Multi-functional organic corrosion inhibitor [J]. Cement and Concrete Composites, 2004, 26(3): 199–207. DOI: https://doi.org/10.1016/S0958-9465(03)00039-8.

    Google Scholar 

  32. ORMELLESE M, BOLZONI F, LAZZARI L, BRENNA A, PEDEFERRI M. Organic substances as inhibitors for chloride-induced corrosion in reinforced concrete [J]. Materials and Corrosion, 2011, 62(2): 170–177. DOI: https://doi.org/10.1016/S0958-9465(03)00039-8.

    Google Scholar 

  33. AGRAWAL R, NAMBOODHIRI T K G. The inhibition of corrosion and hydrogen embrittlement of AISI 410 stainless steel [J]. Journal of Applied Electrochemistry, 1992, 22: 383–389. DOI: https://doi.org/10.1007/BF01092693.

    Google Scholar 

  34. SOUDANI M, HADJ MELIANI M, EL-MILOUDI K, AZARI Z, SOROUR A A, MERAH N, PLUVINAGE G. Reduction of hydrogen embrittlement of API 5l X65 steel pipe using a green inhibitor [J]. International Journal of Hydrogen Energy, 2018, 43(24): 11150–11159. DOI: https://doi.org/10.1016/j.ijhydene.2018.04.236.

    Google Scholar 

  35. MAO Jiang-hong, JIN Wei-liang, ZHANG Jun, XIA Jin, FAN Wei-jie, XU Yi-dong. Hydrogen embrittlement risk control of prestressed tendons during electrochemical rehabilitation based on bidirectional electro-migration [J]. Construction and Building Materials, 2019, 213: 582–591. DOI: https://doi.org/10.1016/j.conbuildmat.2019.04.008.

    Google Scholar 

  36. LYNCH S. Hydrogen embrittlement phenomena and mechanisms [J]. Corrosion Reviews, 2012, 30(3, 4): 105–123. DOI: https://doi.org/10.1515/corrrev-2012-0502.

    Google Scholar 

  37. TROIANO A R. The role of hydrogen and other interstitials in the mechanical behavior of metals [J]. Metallography, Microstructure, and Analysis, 2016, 5(6): 557–569. DOI: https://doi.org/10.1007/s13632-016-0319-4.

    Google Scholar 

  38. LOUTHAN M R. Strain localization and hydrogen embrittlement [J]. Scripta Metallurgica, 1983, 17(4): 451–454. DOI: https://doi.org/10.1016/0036-9748(83)90329-0.

    Google Scholar 

  39. PETCH N J, STABLES P. Delayed fracture of metals under static load [J]. Nature, 1952, 169(4307): 842–843. DOI: https://doi.org/10.1038/169842a0.

    Google Scholar 

  40. ZAPFFE C, SIMS C. Hydrogen embrittlement, internal stress and defects in steel [M]. Technology Publication Contribution, 1941.

  41. GARCÍA J, ALMERAYA F, BARRIOS C, GAONA C, NÚNEZ R, LÓPEZ I, RODRÍGUEZ M, MARTÍNEZ-VILLAFAÑE A, BASTIDAS J M. Effect of cathodic protection on steel-concrete bond strength using ion migration measurements [J]. Cement and Concrete Composites, 2012, 34(2): 242–247. DOI: https://doi.org/10.1016/j.cemconcomp.2011.09.014.

    Google Scholar 

  42. BOIADJIEVA-SCHERZER T, KRONBERGER H, FAFILEK G, MONEV M. Hydrogen evolution reaction on electrodeposited Zn-Cr alloy coatings [J]. Journal of Electroanalytical Chemistry, 2016, 783: 68–75. DOI: https://doi.org/10.1016/j.jelechem.2016.10.059.

    Google Scholar 

  43. NESIC S, POSTLETHWAITE J, OLSEN S. An electrochemical model for prediction of corrosion of mild steel in aqueous carbon dioxide solutions [J]. Corrosion, 1996, 52(4): 280–294. DOI: https://doi.org/10.5006/1.3293640.

    Google Scholar 

  44. LI Teng, JIN Wei-liang, XU Chen, MAO Jiang-hong. Determination of steady critical current density of hydrogen evolution during electrochemical repair process of reinforced concrete [J]. Journal of the Chinese Society of Corrosion & Protection, 2017, 37(4): 382–388. DOI: https://doi.org/10.11902/1005.4537.2016.067. (in Chinese)

    Google Scholar 

  45. JIAO Ming-yuan, JIN Wei-liang, MAO Jiang-hong, LI Teng, XIA Jin. Effect of concrete inner environment on hydrogen evolution of rebar during electrochemical remediation [J]. Journal of Chinese Society for Corrosion and Protection, 2018, 38(5): 57–64. DOI: https://doi.org/10.11902/1005.4537.2017.168. (in Chinese)

    Google Scholar 

  46. TORIBIO J, VERGARA D, LORENZO M. Hydrogen embrittlement and micro-damage in notched specimens of progressively cold-drawn pearlitic steel wires [J]. Theoretical and Applied Fracture Mechanics, 2017, 90: 276–286. DOI: https://doi.org/10.1016/j.tafmec.2017.06.014.

    Google Scholar 

  47. SERGEEV N N, CHUKANOV A N, BARANOV V P, YAKOVENKO A A. Development of damage and decarburization of high-strength low-alloy steels under hydrogen embrittlement [J]. Metal Science and Heat Treatment, 2015, 57(1, 2): 63–68. DOI: https://doi.org/10.1007/s11041-015-9836-z.

    Google Scholar 

  48. PERRIN M, GAILLET L, TESSIER C, IDRISSI H. Hydrogen embrittlement of prestressing cables [J]. Corrosion Science, 2010, 52(6): 1915–1926. DOI: https://doi.org/10.1016/j.corsci.2010.02.041.

    Google Scholar 

  49. BILLINGHAM M, JOHN G. Determining the compatibility of high strength steels to cathodic protection [C]// NACE International Corrosion 2008 Conference & Expo. 08066: 1–14.

  50. BRIOTTET L, MORO I, LEMOINE P. Quantifying the hydrogen embrittlement of pipeline steels for safety considerations [J]. International Journal of Hydrogen Energy, 2012, 37(22): 17616–17623. DOI: https://doi.org/10.1016/j.ijhydene.2012.05.143.

    Google Scholar 

  51. VELU S, LEE H S, KARTHICK S. Extraction of chloride from chloride contaminated concrete through electrochemical method using different anodes [J]. Construction and Building Materials, 2018, 158: 549–562. DOI: https://doi.org/10.1016/j.conbuildmat.2017.10.052.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiang-hong Mao  (毛江鸿) or Yi-dong Xu  (徐亦冬).

Additional information

Foundation item: Projects(51908496, 51878610, 51820105012, 51778577, 51638013) supported by the National Natural Science Foundation of China; Projects (LY18E080003, LQ19E080011, LQ19E080012, LQ20E080001) supported by the Natural Science Foundation of Zhejiang Province, China; Project(2018A610359) supported by the Natural Science Foundation of Ningbo, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Mao, Jh., Jin, Wl. et al. Control of repair effect and hydrogen embrittlement risk by parameters optimization for BIEM. J. Cent. South Univ. 27, 2408–2423 (2020). https://doi.org/10.1007/s11771-020-4458-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4458-z

Key words

关键词

Navigation