Skip to main content
Log in

Multifunctional hopeite nanocoating on Ti64 substrates by pulsed laser deposition and radio frequency magnetron sputtering for orthopedic implant applications: A comparative study

利用脉冲激光沉积和射频磁控溅射在Ti64 基底上 制备多功能磷锌矿纳米涂层于骨科植入物的比较研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Functionalized implants demonstrate an upgraded approach in orthopedic implants, aiming to achieve long term success through improved bio integration. Bioceramic coatings with multifunctionality have arisen as an effective substitute for conventional coatings, owing to their combination of various properties that are essential for bio-implants, such as osteointegration and antibacterial character. In the present study, thin hopeite coatings were produced by Pulsed laser deposition (PLD) and radio frequency magnetron sputtering (RFMS) on Ti64 substrates. The obtained hopeite coatings were annealed at 500 °C in ambient air and studied in terms of surface morphology, phase composition, surface roughness, adhesion strength, antibacterial efficacy, apatite forming ability, and surface wettability by scanning electron microscope (SEM), X-ray diffraction (XRD), atomic force microscope (AFM), tensometer, fluorescence-activated cell sorting (FACS), simulated body fluid (SBF) immersion test and contact angle goniometer, respectively. Furthermore, based on promising results obtained in the present work it can be summarized that the new generation multifunctional hopeite coating synthesized by two alternative new process routes of PLD and RFMS on Ti64 substrates, provides effective alternatives to conventional coatings, largely attributed to strong osteointegration and antibacterial character of deposited hopeite coating ensuring the overall stability of metallic orthopedic implants.

摘要

功能化种植体展示了骨科种植体的升级方法,旨在通过改进生物整合实现长期成功。多功能的 生物陶瓷涂层由于其结合了生物植入物所必需的各种性能,如骨整合和抗菌特性,已成为传统涂层的 有效替代品。本文利用脉冲激光沉积(PLD)和射频磁控溅射(RFMS)在Ti64 基底上制备了薄磷锌矿涂 层。使磷锌矿涂层在500 °C 的真空中退火,并分别通过扫描电子显微镜(SEM)、X 射线衍射(XRD)、 原子力显微镜(AFM)、张力计、荧光激活细胞排序(流式细胞仪)、模拟体液(SBF)浸泡试验和接触角 测角仪研究表面形态、相组成、表面粗糙度、粘附强度、抗菌功效、磷灰石形成能力和表面润湿性能。 结果表明,在Ti64 基底上由PLD 和RFMS 两种新工艺路线合成的新一代多功能磷锌矿涂层是传统涂 层的有效替代品。所沉积的磷锌矿涂层具有较强的骨整合能力和抗菌特性,保证了金属骨科种植体的 整体稳定性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. YANG W H, XI X F, SI Y, HUANG S, WANG J F, CAI K Y. Surface engineering of titanium alloy substrates with multilayered biomimetic hierarchical films to regulate the growth behaviors of osteoblasts [J]. Acta Biomaterialia, 2014, 10(10): 4525–4536. DOI: https://doi.org/10.1016/j.actbio.2014.05.033.

    Google Scholar 

  2. HALLAB N J, VERMES C, MESSINA C, ROEBUCK K A, GLANT T T, JACOBS J J. Concentration and composition dependent effects of metal ions on human MG-63 osteoblasts [J]. Journal of Biomedical Materials Research, 2002, 60(3): 420–433. DOI: https://doi.org/10.1002/jbm.10106.

    Google Scholar 

  3. SUN Z L, WATAHA J C, HANKS C T. Effects of metal ions on osteoblast like cell metabolism and differentiation [J]. Journal of Biomedical Materials Research, 1997, 34(1): 29–37. DOI: https://doi.org/10.1002/(sici)1097-4636(199701)34:1<29::aid-jbm5>3.0.co;2-p.

    Google Scholar 

  4. THOMPSON G J, PUELO D A. TC4 ion solution inhibition of osteogenic cell phenotype as a function of differentiation time course in vitro [J]. Biomaterials, 1996, 17(20): 1949–1954. DOI: https://doi.org/10.1016/0142-9612(96)00009-9.

    Google Scholar 

  5. WANG J Y, WICKLUND B H, GUSTILO R B, TSUKAYAMA D T. Prosthetic metals interfere with the functions of human osteoblast cells in vitro [J]. Clinical Orthopaedics and Related Research, 1997, 339: 216–226. DOI: https://doi.org/10.1097/00003086-199706000-00030.

    Google Scholar 

  6. MOHAMMED M T, KHAN Z A, SIDDIQUEE A N. Titanium and its alloys the imperative materials for biomedical applications [C]// ICRTET. Meerut, India, 2012: 91–95.

    Google Scholar 

  7. YU J, CHU X, CAI Y, TONG P, YAO J. Preparation and characterization of antimicrobial nano hydroxyapatite composites [J]. Materials Science and Engineering C, 2014, 37: 54–59. DOI: https://doi.org/10.1016/j.msec.2013.12.038.

    Google Scholar 

  8. PARK J W, PARK K B, SUH J Y. Effects of calcium ion incorporation on bone healing of Ti6Al4V alloy implants in rabbit tibiae [J]. Biomaterials, 2007, 28(22): 3306–3313. DOI: https://doi.org/10.1016/j.biomaterials.2007.04.007.

    Google Scholar 

  9. SRIDHAR T M, ARUMUGAM T K, RAJESWARI S, SUBBAIYAN M. Electrochemical behaviour of hydroxyapatite-coated stainless-steel implants [J]. Journal of Materials Science Letters, 1997, 16(22): 1964–1966. DOI: https://doi.org/10.1023/A:1018511406374.

    Google Scholar 

  10. YAMAGUCHI M, OISHI H, SUKETA Y. Stimulatory effect of zinc on bone formation in tissue culture [J]. Journal of Materials Science Letters, 1987, 36(22): 4007–4012. DOI: https://doi.org/10.1016/0006-2952(87)90471-0.

    Google Scholar 

  11. EBERLE J, SCHMIDMAYER S, ERBEN R G, STANGASSINGER M, ROTH H P. Skeletal effects of zinc deficiency in growing rats [J]. Journal of Trace Elements in Medicine and Biology, 1999, 13(1, 2): 21–26. DOI: https://doi.org/10.1016/S0946-672X(99)80019-4.

    Google Scholar 

  12. CHEN D, WAITE L C, PIERCE W M. In vitro effects of zinc on markers of bone formation [J]. Biological Trace Element Research, 1999, 68(3): 225–234. DOI: https://doi.org/10.1007/BF02783905.

    Google Scholar 

  13. SHIBLI S M A, JAYALEKSHMI A C. Development of phosphate inter layered hydroxyapatite coating for stainless steel implant [J]. Applied Surface Science, 2008, 254(13): 4103–4110. DOI: https://doi.org/10.1016/j.apsusc.2007.12.05.

    Google Scholar 

  14. HERSCHKE L, ROTTSTEGGE J, LIEBERWIRTH I, WEGNER G. Zinc phosphate as versatile material for potential biomedical applications, Part 1 [J]. Journal of Materials Science: Materials in Medicine, 2006, 17(1): 81–94. DOI: https://doi.org/10.1007/s10856-006-6332-4.

    Google Scholar 

  15. NRIAGU J O. Solubility equilibrium constant of α-hopeite [J]. Geochimica et Cosmochimica Acta, 1973, 37(6): 2357–2361. DOI: https://doi.org/10.1016/0016-7037(73)90284-6.

    Google Scholar 

  16. UO M, SJOREN G, SUNDH A, WATARI F, BERGMAN M, LERNER U. Cytotoxicity and bonding property of dental ceramics [J]. Dental Materials, 2003, 19(6): 487–492. DOI: https://doi.org/10.1016/s0109-5641(02)00094-5.

    Google Scholar 

  17. ATTAR N, TAM L E, MCCOMB D. Mechanical and physical properties of contemporary dental luting agents [J]. Journal of Prosthetic Dentistry, 2003, 89(2): 127–134. DOI: https://doi.org/10.1067/mpr.2003.20.

    Google Scholar 

  18. HORIUCHI S, ASAOKA K, TANAKA E. Development of a novel cement by conversion of hopeite in set zinc phosphate cement into biocompatible apatite [J]. Bio-Medical Materials and Engineering, 2009, 19(2, 3): 121–131. DOI: https://doi.org/10.3233/BME-2009-0571.

    Google Scholar 

  19. LIN F H, HSU Y S, LIN S H, SUN J S. The effect of Ca/P concentration and temperature of simulated body fluid on the growth of hydroxyapatite coating on alkali-treated 316L stainless steel [J]. Biomaterials, 2002, 23(19): 4029–4038. DOI: https://doi.org/10.1016/S0142-9612(02)00154-0.

    Google Scholar 

  20. KOKUBO T, ITO S, SAKKA S, YAMAMURO T. Formation of a high strength bioactive glass-ceramic in the system MgO-CaO-SiO2-P2O5 [J]. Journal of Materials Science, 1986, 21: 536–540. DOI: https://doi.org/10.1007/BF01145520.

    Google Scholar 

  21. KOKUBO T, HAYASHI T, SAKKA S, KITSUGI T, YAMAMURO T. Bonding between bioactive glasses, glass-ceramics or ceramics in simulated body fluid [J]. Journal of the Ceramic Association, 1987, 95: 785–791. DOI: https://doi.org/10.2109/jcersj1950.95.1104_785.

    Google Scholar 

  22. KOKUBO T, KUSHITANI H, SAKKA S, KITSUGI T, YAMAMURO T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramics A-W3 [J]. Journal of Biomedical Materials Research, 1990, 24(6): 721–734. DOI: https://doi.org/10.1002/jbm.820240607.

    Google Scholar 

  23. KOKUBO T. Surface chemistry of bioactive glass-ceramics [J]. Journal of Non-Crystalline Solids, 1990, 120(1–3): 138–151. DOI: https://doi.org/10.1016/0022-3093(90)90199-V.

    Google Scholar 

  24. AZA P N D, GUITIAN F, AZA S D. Bioactivity of wollastonite ceramics: In vitro evaluation [J]. Scripta Metallurgica et Materialia, 1994, 31: 1001–1005. DOI: https://doi.org/10.1016/0956-716X(94)90517-7.

    Google Scholar 

  25. LIU D M. Bioactive glass-ceramic: Formation, characterization and bioactivity [J]. Materials Chemistry and Physics, 1994, 36: 294–303. DOI: https://doi.org/10.1016/0254-0584(94)90045-0.

    Google Scholar 

  26. AZA P N D, LUKLINSKA Z B, ANSEAU M R, GUITIAN F, AZA S D E. Bioactivity of pseudowollastonite in human saliva [J]. Journal of Dentistry, 1999, 27: 107–113. DOI: https://doi.org/10.1016/S0300-5712(98)00029-3.

    Google Scholar 

  27. AZA P N D, LUKLINSKA Z. Effect of the glass-ceramic microstructure on its in vitro bioactivity [J]. Journal of Materials Science: Materials in Medicine, 2003, 14: 891–898. DOI: https://doi.org/10.1023/A:1025686727291.

    Google Scholar 

  28. AZA P N D, LUKLINSKA Z B, ANSEAU M R. Bioactivity of diopside ceramic in human parotid saliva [J]. Journal of Biomedical Materials Research, 2005, 73: 54–60. DOI: https://doi.org/10.1002/jbm.b.30187.

    Google Scholar 

  29. ALEMANY M I, VELASQUEZ P, de la CASA-LILLO M A, AZA P N D. Effect of materials processing methods on the in vitro bioactivity of wollastonite glass-ceramic materials [J]. Journal of Non-Crystalline Solids, 2005, 351: 1716–1726. DOI: https://doi.org/10.1016/j.jnoncrysol.2005.04.062.

    Google Scholar 

  30. KHAN A N, LU J. Thermal cyclic behavior of air plasma sprayed thermal barrier coatings sprayed on stainless steel substrates [J]. Surface and Coatings Technology, 2007, 201(8): 4653–4658. DOI: https://doi.org/10.1016/j.surfcoat.2006.10.022.

    Google Scholar 

  31. OSKUIE A A, AFSHAR A, HASANNEJAD H. Effect of current density on DC electrochemical phosphating of stainless steel 316 [J]. Surface and Coatings Technology, 2010, 205(7): 2302–2306. DOI: https://doi.org/10.1016/j.surfcoat.2010.09.016.

    Google Scholar 

  32. IONITA D, UNGUREANU C, DEMETRESCU I. Electrochemical and antibacterial performance of CoCrMo alloy coated with hydroxyapatite or silver nanoparticles [J]. Journal of Materials Engineering and Performance, 2013, 22: 3584–3591. DOI: https://doi.org/10.1007/s11665-013-0653-5.

    Google Scholar 

  33. KAVITHA C, NARAYANAN T S N S, RAVICHANDRAN K, PARK I L S, LEE M H. Deposition of zinc-zinc phosphate composite coatings on steel by cathodic electrochemical treatment [J]. Journal of Coatings Technology and Research, 2014, 11(3): 431–442. DOI: https://doi.org/10.1007/s11998-013-9533-z.

    Google Scholar 

  34. VALANEZHAD A, TSURU K, MARUTA M, KAWACHI G, MATSUYA S, ISHIKAWA K. Zinc phosphate coating on 316L-type stainless steel using hydrothermal treatment [J]. Surface and Coatings Technology, 2010, 205(7): 2538–2541. DOI: https://doi.org/10.1016/j.surfcoat.2010.09.050.

    Google Scholar 

  35. RAD H R B, HAMZAH E, KADIR M R A, SAUD S. The mechanical properties and corrosion behavior of double-layered nano hydroxyapatite-polymer coating on Mg-Ca alloy [J]. Journal of Materials Engineering and Performance, 2015, 24: 4010–4021. DOI: https://doi.org/10.1007/s11665-015-1661-4.

    Google Scholar 

  36. CARRADO A. Nano-crystalline pulsed laser deposition hydroxyapatite thin films on Ti substrate for biomedical application [J]. Journal of Coatings Technology and Research, 2011, 8: 749–755. DOI: https://doi.org/10.1007/s11998-011-9355-9.

    Google Scholar 

  37. KHALILI V, ALLAFI J K, GHALEH H M, PAULSEN A, FRENZEL J, EGGELER G. The influence of Si as reactive bonding agent in the electrophoretic coatings of HA-Si-MWCNTs on NiTi alloys [J]. Journal of Materials Engineering and Performance, 2016, 25(2): 390–400. DOI: https://doi.org/10.1007/s11665-015-1824-3.

    Google Scholar 

  38. FOERSTER C E, SERBENA F C, DA SILVA SL R, LEPIENSKI C M, DE M, SIQUEIRA C J, UEDA M. Mechanical and tribological properties of AISI 304 stainless steel nitrided by glow discharge compared to ion implantation and plasma immersion ion implantation [J]. Nuclear Physics B, 2007, 257(1, 2): 732–736. DOI: https://doi.org/10.1016/j.nimb.2007.01.266.

    Google Scholar 

  39. KHEIMEHSARI H, IZMAN S, SHIRDAR M R. Effects of HA-coating on the surface morphology and corrosion behavior of a Co-Cr-based implant in different conditions [J]. Journal of Materials Engineering and Performance, 2015, 24(6): 2294–2302. DOI: https://link.springer.com/article/10.1007/s11665-015-1517-y.

    Google Scholar 

  40. AKSAKAL B, GAVGALI M, DIKICI B. The effect of coating thickness on corrosion resistance of hydroxyapatite coated Ti6Al4V and 316L SS implants [J]. Journal of Materials Engineering and Performance, 2010, 19(6): 894–899. DOI: https://link.springer.com/article/10.1007/s11665-009-9559-7.

    Google Scholar 

  41. TLOTLENG M, AKINLABI E, SHUKLA M, PITYANA S. Microstructures, hardness and bioactivity of hydroxyapatite coatings deposited by direct laser melting process [J]. Materials Science and Engineering C, 2014, 43: 189–198. DOI: https://doi.org/10.1016/j.msec.2014.06.032.

    Google Scholar 

  42. GARCIA S F J, MAYOR M B, ARIAS J L, POU J, LEON B, PEREZ A M. Hydroxyapatite coatings: A comparative study between plasmaspray and pulsed laser deposition techniques [J]. Journal of Materials Science: Materials in Medicine, 1997, 8(12): 861–865. DOI: https://doi.org/10.1023/A:1018549720873.

    Google Scholar 

  43. BAO Q, CHEN C, WANG D, JI Q, LEI T. Pulsed laser deposition and its current research status in preparing hydroxyapatite thin films [J]. Applied Surface Science, 2005, 252(5): 1538–1544. DOI: https://doi.org/10.1016/j.apsusc.2005.02.127.

    Google Scholar 

  44. BIGI A, BRACCI B, CUISINIER F, ELKAIM R, FINI M, MAYER I, MIHAILESCU IN, SOCOL G, STURBA L, TORRICELLI P. Human osteoblast response to pulsed laser deposited calcium phosphate coatings [J]. Biomaterials, 2005, 26(15): 2381–2389. DOI: https://doi.org/10.1016/j.biomaterials.2004.07.057.

    Google Scholar 

  45. FERNANDEZ P J M, GARCIA C M V, CLERIES L, SARDIN G, MORENZA J L. Influence of the interface layer on the adhesion of pulsed laser deposited hydroxyapatite coatings on titanium alloy [J]. Applied Surface Science, 2002, 195(1–4): 31–37. DOI: https://doi.org/10.1016/S0169-4332(02)00002-8.

    Google Scholar 

  46. ZENG H, LACEFIELD W R. XPS, EDX and FTIR analysis of pulsed laser deposited calcium phosphate bioceramic coatings: The effects of various process parameters [J]. Biomaterials, 2000, 21(1): 23–30. DOI: https://doi.org/10.1016/S0142-9612(99)00128-3.

    Google Scholar 

  47. RAJESH P, MURALEEDHARAN C V, KOMATH M, VARMA H. Pulsed laser deposition of hydroxyapatite on titanium substrate with titania interlayer [J]. Journal of Materials Science: Materials in Medicine, 2011, 22(3): 497–505. DOI: https://doi.org/10.1007/s10856-011-4230-x.

    Google Scholar 

  48. WON Y J, KI H. Fabricating functionally graded films with designed gradient profiles using pulsed laser deposition [J]. Journal of Applied Physics, 2013, 113: 174910. DOI: https://doi.org/10.1063/1.4803692.

    Google Scholar 

  49. TANASKOVIC D, JOKIC B, SOCOL G, POPESCU A, MIHAILESCU I N, PETROVIC R, JANACKOVIC D. Synthesis of functionally graded bioactive glass-apatite multistructures on Ti substrates by pulsed laser deposition [J]. Applied Surface Science, 2007, 254(4): 1279–1282. DOI: https://doi.org/10.1016/j.apsusc.2007.08.009.

    Google Scholar 

  50. SHI J Z, CHEN C Z, YU H J, ZHANG S J. Application of magnetron sputtering for producing bioactive ceramic coatings on implant materials [J]. Bulletin of Materials Science, 2008, 31: 877–884. DOI: https://doi.org/10.1007/s12034-008-0140-z.

    Google Scholar 

  51. SURMENEV R A. A review of plasma-assisted methods for calcium phosphate-based coatings fabrication [J]. Surface and Coatings Technology, 2012, 206(8, 9): 2035–2056. DOI: https://doi.org/10.1016/j.surfcoat.2011.11.002.

    Google Scholar 

  52. RUSOP M, UMA K, SOGA T, JIMBO T. Structural properties of pulsed laser deposited zinc oxide thin films annealed at various temperatures [J]. Surface Engineering, 2007, 23(3): 230–233. DOI: https://doi.org/10.1179/174329406X122964.

    Google Scholar 

  53. YANG Y, KIM K H, ONG J L. A review on calcium phosphate coatings produced using a sputtering process-an alternative to plasma spraying [J]. Biomaterials, 2005, 26(3): 327–337. DOI: https://doi.org/10.1016/j.biomaterials.2004.02.029.

    Google Scholar 

  54. KUPPUSAMI P, RAGHUNATHAN V S. Status of pulsed laser deposition: Challenges and opportunities [J]. Surface Engineering, 2006, 22(2): 81–83. DOI: https://doi.org/10.1179/174329406X98502.

    Google Scholar 

  55. KHANDELWAL H, SINGH G, AGRAWAL K, PRAKASH S, AGARWAL R D. Characterization of hydroxyapatite coating by pulse laser deposition technique on stainless steel 316L by varying laser energy [J]. Applied Surface Science, 2013, 265: 30–35. DOI: https://doi.org/10.1016/j.apsusc.2012.10.072.

    Google Scholar 

  56. ZENG H, LACEFIELD W R, MIROV S. Structural and morphological study of pulsed laser deposited calcium phosphate bioceramic coatings: Influence of deposition conditions, laser parameters, and target properties [J]. Journal of Biomedical Materials Research, 2000, 50(2): 248–258. DOI: https://doi.org/10.1002/(SICI)1097-4636(200005)50:2<248::AID-JBM20>3.0.CO;2-I.

    Google Scholar 

  57. DAS A, SHUKLA M. Surface morphology and adhesion studies of pulsed laser deposited hydroxyapatite thin film coatings on SS254 stainless steel [C]// 24th DAE BRNS National Laser Symposium (NLS-24), 2015.

  58. DAS A, SHUKLA M. Surface morphology, bioactivity, and antibacterial studies of pulsed laser deposited hydroxyapatite coatings on stainless steel 254 for orthopedic implant applications [J]. Journal of Materials: Design and Applications, 2016, 233(2): 120–127. DOI: https://doi.org/10.1177/1464420716663029.

    Google Scholar 

  59. CONSTANTINO M E, CAMPILLO B, STAIA M H, SERNA S, JUAREZ-ISLAS J, SUDARSHAN T S. Pulsed electrode deposition of super hard coatings on steel substrates: microstructural and chemical study [J]. Surface Engineering, 2006, 22(3): 212–218. DOI: https://doi.org/10.1179/174329406X108843.

    Google Scholar 

  60. ZHANG S. Hydroxyapatite coatings for biomedical applications [M]. CRC Press, 2018.

  61. WASA K. Handbook of sputtering technology [M]. Elsevier, 2012. DOI: https://doi.org/10.1016/C2010-0-67037-4.

  62. SWANN S. Magnetron sputtering [J]. Physics in Technology, 1988, 19(2): 67–75. DOI: https://doi.org/10.1088/0305-4624/19/2/304.

    Google Scholar 

  63. DRIVER M. Coatings for biomedical applications [M]. Woodhead Publishing Limited, 2012.

  64. WAN T, AOKI H, HIKAWA J, LEE J H. RF-magnetron sputtering technique for producing hydroxyapatite coating film on various substrates [J]. Bio-Medical Materials and Engineering, 2007, 17(5): 291–297. DOI: https://europepmc.org/article/med/17851171.

    Google Scholar 

  65. DAS A, SHUKLA M. Surface morphology and in vitro bioactivity of biocompatible hydroxyapatite coatings on medical grade S31254 steel by RF magnetron sputtering deposition [J]. International Journal of Surface Engineering and Coatings, 2017, 95(5): 276–281. DOI: https://doi.org/10.1080/00202967.2017.1323675.

    Google Scholar 

  66. WOLKOWICZ R. Fluorescence-activated cell sorting, Brenner’s encyclopedia of genetics [M]. Academic Press, 2013.

  67. KASSING R, PETKOV P, KULISCH W, POPOV C. Functional properties of nanostructured materials series II: Mathematics physics and chemistry [M]. Springer, 2006.

  68. NELEA V, MOROSANU C, ILIESCU M, MIHAILESCU I N. Hydroxyapatite thin films grown by pulsed laser deposition and radio-frequency magnetron sputtering: comparative study [J]. Applied Surface Science, 228(1): 346–356. DOI: https://doi.org/10.1016/j.apsusc.2004.01.029.

  69. THIAN E S, HUANG J, BEST S M, BARBER Z H, BONFIELD W. Magnetron co-sputtered silicon-containing hydroxyapatite thin films — An in vitro study [J]. Biomaterials, 2005, 26(16): 2947–2956. DOI: https://doi.org/10.1016/j.biomaterials.2004.07.058.

    Google Scholar 

  70. DINDA G P, SHIN J, MAZUMDER J. Pulse laser deposition of hydroxyapatite thin coatings on TC4: Effect of heat treatment on structure and properties [J]. Acta Biomaterialia, 2009, 5(5): 1821–1830. DOI: https://doi.org/10.1016/j.actbio.2009.01.027.

    Google Scholar 

  71. BLIND O, KLEIN L H, DAILEY B, JORDAN L. Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and TC4 substrates [J]. Dental Materials, 2005, 21(11): 1017–1024. DOI: https://doi.org/10.1016/j.dental.2004.12.003.

    Google Scholar 

  72. TORRISI L. Structural investigations on laser deposited hydroxyapatite films [J]. Thin Solid Films, 1994, 237(1, 2): 12–15. DOI: https://doi.org/10.1016/0040-6090(94)90229-1.

    MathSciNet  Google Scholar 

  73. ZHANG X, XIAO G Y, JIAO Y, ZHAO X C, LU Y P. Facile preparation of hopeite coating on stainless steel by chemical conversion method [J]. Surface and Coatings Technology, 2014, 240: 361–364. DOI: https://doi.org/10.1016/j.surfcoat.2013.12.054.

    Google Scholar 

  74. LOPEZ E O, MELLO A, SENDAO H, COSTA L T, ROSSI A L, OSPINA O R, BORGHI F F, FILHO J G S, ROSSI A M M. Growth of crystalline hydroxyapatite thin films at room temperature by tuning the energy of the RF-Magnetron sputtering plasma [J]. ACS Applied Materials & Interfaces, 2013, 5(19): 9435–9445. DOI: https://doi.org/10.1021/am4020007.

    Google Scholar 

  75. ANSELME K, BIGERELLE M, NOEL B, DUFRESNE E, JUDAS D, IOST A, HARDOUIN P. Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses [J]. Journal of Biomedical Materials Research, 2000, 49(2): 155–166. DOI: https://doi.org/10.1002/(SICI)1097-4636(200002)49:2<155::AID-JBM2>3.0.CO;2-J

    Google Scholar 

  76. PRICE R L, WAID M C, HABERSTROH K M, WEBSTER T J. Selective bone cell adhesion on formulations containing carbon nanofibers [J]. Biomaterials, 2003, 24(11): 1877–1887. DOI: https://doi.org/10.1016/S0142-9612(02)00609-9.

    Google Scholar 

  77. WASHBURN N R, YAMADA K M, SIMON C G, KENNEDY S B, AMIS E J. High-throughput investigation of osteoblast response to polymer crystallinity: Influence of nanometer-scale roughness on proliferation [J]. Biomaterials, 2004, 25(7, 8): 1215–1224. DOI: https://doi.org/10.1016/j.biomaterials.2003.08.043.

    Google Scholar 

  78. WEBSTER T J, HELLENMEYER E L, PRICE R L. Increased osteoblast functions on theta plus delta nanofiber alumina [J]. Biomaterials, 2005, 26(9): 953–960. DOI: https://doi.org/10.1016/j.biomaterials.0204.03.040.

    Google Scholar 

  79. WILSON C J, CLEGG R E, LEAVESLEY D I, PEARCY M J. Mediation of biomaterial-cell interactions by adsorbed proteins: A review [J]. Tissue Engineering, 2005, 11(1, 2): 1–18. DOI: https://doi.org/10.1089/ten.2005.11.1.

    Google Scholar 

  80. YANG L. Nanotechnology-enhanced orthopedic materials fabrications, applications and future trends [M]. Woodhead Publishing, 2015. DOI: https://doi.org/10.1016/C2013-0-16378-7.

  81. GE X, LENG Y, BAO C, XUS L, WANG R, REN F. Antibacterial coatings of fluoridated hydroxyapatite for percutaneous implants [J]. Journal of Biomedical Materials Research Part A, 2010, 95(2): 588–599. DOI: https://doi.org/10.1002/jbm.a.32862.

    Google Scholar 

  82. SARITHA K, RAJESH A, MANJULATHA K, SETTY O H, YENUGU S. Mechanism of antibacterial action of the alcoholic extracts of Hemidesmus indicus (L.) R Br. exSchult, Leucas aspera (Wild.), Plumbago zeylanica L., and Tridax procumbens (L.) R. Br. ex Schult [J]}. Frontiers in Microbiology, 2015, 6: 1–9. DOI: https://doi.org/10.3389/fmicb.2015.00577.

    Google Scholar 

  83. DAS A, SHUKLA M. Hydroxyapatite coatings on high nitrogen stainless steel by laser rapid manufacturing [J]. Journal of the Minerals, Metals & Materials Society, 2017, 69(11): 2292–2296. DOI: https://doi.org/10.1007/s11837-017-2529-x.

    Google Scholar 

  84. DAS A, SHUKLA M. Pulsed laser-deposited hopeite coatings on titanium alloy for orthopaedic implant applications: surface characterization, antibacterial and bioactivity studies [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(5): 214. DOI: https://doi.org/10.1007/s40430-019-1722-y.

    Google Scholar 

  85. PUCKETT S D, TAYLOR E, RAIMONDO T, WEBSTER T J. The relationship between the nanostructure of titanium surfaces and bacterial attachment [J]. Biomaterials, 2010, 31(4): 706–713. DOI: https://doi.org/10.1016/j.biomaterials.2009.09.081.

    Google Scholar 

  86. YI W, SUN X, NIU D, HU X. In vitro bioactivity of 3D Ti-mesh with bioceramic coatings in simulated body fluid [J]. Journal of Asian Ceramic Societies, 2014, 2(3): 210–214. DOI: https://doi.org/10.1016/j.jascer.2014.04.002.

    Google Scholar 

  87. KOKUBO T, TAKADAMA H. How useful is SBF in predicting in vivo bone bioactivity? [J]. Biomaterials, 2006, 27(15): 2907–2915. DOI: https://doi.org/10.1016/j.biomaterials.2006.01.017.

    Google Scholar 

  88. MAN H C, CHIU K Y, CHENG F T, WONG K H. Adhesion study of pulsed laser deposited hydroxyapatite coating on laser surface nitrided titanium [J]. Thin Solid Films, 2009, 517(18): 5496–5501. DOI: https://doi.org/10.1016/j.tsf.2009.03.208.

    Google Scholar 

  89. NEO M, KOTANI S, NAKAMURA T, YAMAMURO T, OHTSUKI C, KOKUBO T, BANDO Y A. A comparative study of ultrastructures of the interfaces between four kinds of surface-active ceramic and bone [J]. Journal of Biomedical Materials Research, 1992, 26(11): 1419–1432. DOI: https://doi.org/10.1002/jbm.820261103.

    Google Scholar 

  90. CHAVAN P N, BAHIR M M, MENE R U, MAHABOLE M P, KHAIRNAR R S. Study of nano biomaterial hydroxyapatite in simulated body fluid: formation and growth of apatite [J]. Material Science & Engineering B, 2010, 168(1): 224–230. DOI: https://doi.org/10.1016/j.mseb.2009.11.012.

    Google Scholar 

  91. GU Y W, KHOR K A, CHEANG P. Bone-like apatite layer formation on hydroxyapatiteprepared by spark plasma sintering (SPS) [J]. Biomaterials, 2004, 25(18): 4127–4134. DOI: https://doi.org/10.1016/j.biomaterials.2003.11.030.

    Google Scholar 

  92. WANG Y X, ROBERTSON J L, SPILLMAN W B, CLAUS R O. Effects of the chemical structure and the surface properties of polymeric biomaterials and their biocompatibility [J]. Journal of Pharmaceutical Research, 2004, 21(18): 1362–1373. DOI: https://doi.org/10.1023/B:PHAM.0000036909.41843.18.

    Google Scholar 

  93. WANG J, PAN C J, HUANG N, SUN H, YANG P, LENG X Y, CHEN J Y, WAN G J, CHU P K. Surface characterization and blood compatibility of poly (ethylene terephthalate) modified by plasma surface grafting [J]. Surface and Coatings Technology, 2005, 196(1–3): 307–311. DOI: https://doi.org/10.1016/j.surfcoat.2004.08.161.

    Google Scholar 

  94. HIGUCHI A, SHIRANO K, HARASHIMA M, YOON B O, HARA M, HATTORI M, IMAMURA K. Chemically modified polysulfone hollow fibers with vinylpyrrolidone having improved blood compatibility [J]. Biomaterials, 2002, 23(13): 2659–2666. DOI: https://doi.org/10.1016/S0142-9612(01)00406-9.

    Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to MNNIT Allahabad, IIT Kanpur, RRCAT Indore, MHRD GOI and UOJ South Africa for their valuable support during the entire duration of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Shukla, M. Multifunctional hopeite nanocoating on Ti64 substrates by pulsed laser deposition and radio frequency magnetron sputtering for orthopedic implant applications: A comparative study. J. Cent. South Univ. 27, 2198–2209 (2020). https://doi.org/10.1007/s11771-020-4441-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4441-8

Key words

关键词

Navigation