Skip to main content
Log in

Effect of loading rates on crack propagating speed, fracture toughness and energy release rate using single-cleavage trapezoidal open specimen under impact loads

冲击载荷下加载率对裂纹扩展速度、断裂韧度和能量释放率的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The former studies indicate that loading rates significantly affect dynamic behavior of brittle materials, for instance, the dynamic compressive and tensile strength increase with loading rates. However, there still are many unknown or partially unknown aspects. For example, whether loading rates have effect on crack dynamic propagating behavior (propagation toughness, velocity and arrest, etc). To further explore the effect of loading rates on crack dynamic responses, a large-size single-cleavage trapezoidal open (SCTO) specimen was proposed, and impacting tests using the SCTO specimen under drop plate impact were conducted. Crack propagation gauges (CPGs) were employed in measuring impact loads, crack propagation time and velocities. In order to verify the testing result, the corresponding numerical model was established using explicit dynamic software AUTODYN, and the simulation result is basically consistent with the experimental results. The ABAQUS software was used to calculate the dynamic SIFs. The universal function was calculated by fractal method. The experimental-numerical method was employed in determining initiation toughness and propagation toughness. The results indicate that crack propagating velocities, dynamic fracture toughness and energy release rates increase with loading rates; crack delayed initiation time decreases with loading rates.

摘要

通常,加载率会显著影响脆性材料的抗压强度和拉伸强度等力学行为,但是对其它动态力学性 能的影响仍然存在许多未知或部分未知的情况,比如,加载率是否会影响裂纹的动态扩展行为(扩展 韧度,裂纹速度和裂纹止裂等)。为了进一步探讨加载率对裂纹动态响应的影响,提出梯形开口的侧 开单裂纹构型试样,并在落锤冲击装置下对该试样进行了冲击试验。利用裂纹扩展计测量冲击载荷、 裂纹扩展时间和裂纹速度。为了验证测试结果,采用显式动力软件AUTODYN 建立了相应的数值模 型,数值仿真结果与实验结果基本一致。利用有限元程序ABAQUS 计算动态应力强度因子,并采用 普适函数进行修正,最后基于实验-数值方法确定裂纹起始韧度和裂纹扩展韧度。结果表明,裂纹扩 展速度、动态断裂韧度和能量释放率均随着加载率的增加而增加,裂纹的延迟起裂时间随着加载率的 增加而缩短。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. HUANG B, LIU J. The effect of loading rate on the behavior of samples composed of coal and rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 61: 23–30. DOI: https://doi.org/10.1016/j.ijrmms.2013.02.002.

    Google Scholar 

  2. LI X B, LOK T S, ZHAO J. Dynamic characteristics of granite subjected to intermediate loading rate [J]. Rock Mechanics and Rock Engineering, 2004, 38: 21–39. DOI: https://doi.org/10.1007/s00603-004-0030-7.

    Google Scholar 

  3. KIM D J, SIRIJAROONCHAI K, EL-TAWIL S. NAAMAN A E. Numerical simulation of the split Hopkinson pressure bar test technique for concrete under compression [J]. International Journal of Impact Engineering, 2010, 37: 141–149. DOI: https://doi.org/10.1016/j.ijimpeng.2009.06.012.

    Google Scholar 

  4. CAO A, JING G, DING Y, LIU S. Mining-induced static and dynamic loading rate effect on rock damage and acoustic emission characteristic under uniaxial compression [J]. Safety Science, 2019, 116: 86–96. DOI: https://doi.org/10.1016/j.ssci.2019.03.003.

    Google Scholar 

  5. KOMURLU E. Loading rate conditions and specimen size effect on strength and deformability of rock materials under uniaxial compression [J]. International Journal of Geo-Engineering, 2018, 9(1): 1–11. DOI: https://doi.org/10.1186/s40703-018-0085-z.

    Google Scholar 

  6. ELMER VII W, TACIROGLU E, MCMICHAEL L. Dynamic strength increase of plain concrete from high strain rate plasticity with shear dilation [J]. International Journal of Impact Engineering, 2012, 45: 1–15. DOI: https://doi.org/10.1016/j.ijimpeng.2012.01.003.

    Google Scholar 

  7. HEIDARI-RARANI M, ALIHA M R M, SHOKRIEH M, AYATOLLAHI M R. Mechanical durability of an optimized polymer concrete under various thermal cyclic loadings-An experimental study [J]. Construction and Building Materials, 2014, 64: 308–315. DOI: https://doi.org/10.1016/j.conbuildmat.2014.04.031.

    Google Scholar 

  8. KIM E, CHANGANI H. Effect of water saturation and loading rate on the mechanical properties of red and buff sandstones [J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 88: 23–28. DOI: https://doi.org/10.1016/j.ijrmms.2016.07.005.

    Google Scholar 

  9. YIN Zhi-qiang, CHEN Wen-su, HAO Hong, CHANG Ju-cai, ZHAO Guang-ming, CHEN Zhi-yu, PENG Kang. Dynamic compressive test of gas-containing coal using a modified split Hopkinson pressure bar system [J]. Rock Mechanics and Rock Engineering, 2020, 53: 815–829. DOI: https://doi.org/10.1007/s00603-019-01955-w.

    Google Scholar 

  10. ZHU Z M, XU W T, FENG R Q. A new method for measuring mode-I dynamic fracture toughness of rock under blasting loads [J]. Experimental Techniques, 2016, 40(3): 889–905. DOI: https://doi.org/10.1007/s40799-016-0093-x.

    Google Scholar 

  11. HUANG Hua, YUAN Yu-jie, ZHANG Wei, GAO Zi-chen. Bond behavior between lightweight aggregate concrete and normal weight concrete based on splitting-tensile test [J]. Construction and Building Materials, 2019, 209: 306–314. DOI: https://doi.org/10.1016/j.conbuildmat.2019.03.125.

    Google Scholar 

  12. GUL A J, FATEHI M S, YASMEEN G, SHARIFAH M M, NORAM I R. Uniaxial compression and tensile splitting tests on adobe with embedded steel wire reinforcement [J]. Construction and Building Materials, 2018, 176: 383–393. DOI: https://doi.org/10.1016/j.conbuildmat.2018.05.006.

    Google Scholar 

  13. WANG Q Z, YANG J R, ZHANG C G, ZHOU Y, LI L, ZHU Z M, WU L Z. Sequential determination of dynamic initiation and propagation toughness of rock using an experimental-numerical- analytical method [J]. Engineering Fracture Mechanics, 2015, 141: 78–94. DOI: https://doi.org/10.1016/j.engfracmech.2015.04.025.

    Google Scholar 

  14. WANG X M, ZHU Z M, WANG M, YING P, ZHOU L, DONG Y Q. Study of rock dynamic fracture toughness by using VB-SCSC specimens under medium-low speed impacts [J]. Engineering Fracture Mechanics, 2017, 181: 52–64. DOI: https://doi.org/10.1016/j.engfracmech.2017.06.024.

    Google Scholar 

  15. KURUPPU M D, OBARA Y, AYATOLLAHI M R, CHONG K P, FUNATSU T. ISRM-suggested method for determining the mode I static fracture toughness using semi-circular bend specimen [J]. Rock Mechanics and Rock Engineering, 2014, 47(1): 267–274. DOI: https://doi.org/10.1007/s00603-013-0422-7.

    Google Scholar 

  16. ALIHA M R M, AYATOLLAHI M R. Rock fracture toughness study using cracked chevron notched Brazilian disc specimen under pure modes I and II loading-A statistical approach [J]. Theoretical and Applied Fracture Mechanics, 2014, 69(2): 17–25. DOI: https://doi.org/10.1016/j.tafmec.2013.11.008.

    Google Scholar 

  17. GUO H, AZIZ N I, SCHMIDT L C. Rock fracture-toughness determination by the Brazilian test [J]. Engineering Geology, 1993, 33(3): 177–188. DOI: https://doi.org/10.1016/0013-7952(93)90056-I.

    Google Scholar 

  18. AKBARDOOST J, GHADIRIAN H R, SANGSEFIDI M. Calculation of the crack tip parameters in the holed-cracked flattened Brazilian disk (HCFBD) specimens under wide range of mixed mode I/II loading [J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40: 1416–1427. DOI: https://doi.org/10.1111/ffe.12585.

    Google Scholar 

  19. WANG M, ZHU Z M, DONG Y Q, ZHOU L. Study of mixed-mode I/II fractures using single cleavage semicircle compression specimens under impacting loads [J]. Engineering Fracture Mechanics, 2017, 177: 33–44, DOI: https://doi.org/10.1016/j.engfracmech.2017.03.042.

    Google Scholar 

  20. ZHOU L, ZHU Z M, QIU H, ZHANG X S, LANG L. Study of the effect of loading rates on crack propagation velocity and rock fracture toughness using cracked tunnel specimens [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 25–34. DOI: https://doi.org/10.1016/j.ijrmms.2018.10.01.

    Google Scholar 

  21. YING P, ZHU Z M, WANG F, WANG M, NIU C, ZHOU L. The characteristics of dynamic fracture toughness and energy release rate of rock under impact [J]. Measurement, 2019, 147: 106884. DOI: https://doi.org/10.1016/j.measurement.2019.106884.

    Google Scholar 

  22. TANG S B. The effect of T-stress on the fracture of brittle rock under compression [J]. International Journal of Rock Mechanics & Mining Sciences, 2015, 79: 86–98. DOI: https://doi.org/10.1016/j.ijrmms.2015.06.009.

    Google Scholar 

  23. LANG L, ZHU Z, ZHANG X, QIU H, ZHOU C L. Investigation of crack dynamic parameters and crack arresting technique in concrete under impacts [J]. Construction and Building Materials, 2019, 199: 321–334. DOI: https://doi.org/10.1016/j.conbuildmat.2018.12.029.

    Google Scholar 

  24. TANG S B. Stress intensity factors for a Brazilian disc with a central crack subjected to compression [J]. International Journal of Rock Mechanics & Mining Sciences, 2017, 93: 38–45. DOI: https://doi.org/10.1016/j.ijrmms.2017.01.003.

    Google Scholar 

  25. TANG S B, BAO C Y, LIU H Y. Brittle fracture of rock under combined tensile and compressive loading conditions [J]. Canadian Geotechnical Journal, 2017, 54(1): 88–101. DOI: https://doi.org/10.1139/cgj-2016-0214.

    Google Scholar 

  26. ZHANG Z X, KOU S Q, JIANG L G, LINDQVIST P A. Effects of loading rate on rock fracture: Fracture characteristics and energy partitioning [J]. International Journal of Rock Mechanics & Mining Sciences, 2000, 37: 745–762. DOI: https://doi.org/10.1016/S1365-1609(00)00008-3.

    Google Scholar 

  27. ZHAO Y, GONG S, HAO X, PENG Y, JIANG Y. Effects of loading rate and bedding on the dynamic fracture toughness of coal: Laboratory experiments [J]. Engineering Fracture Mechanics, 2017, 178: 375–391. DOI: https://doi.org/10.1016/j.engfracmech.2017.03.011.

    Google Scholar 

  28. SATYANARAYANA A, GATTU M. Effect of displacement loading rates on mode-I fracture toughness of fiber glass-epoxy composite laminates [J]. Engineering Fracture Mechanics, 2019, 218: 1–19. DOI: https://doi.org/10.1016/j.engfracmech.2019.106535.

    Google Scholar 

  29. FREW D J, FORRESTAL M J, CHEN W. A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials [J]. Experimental Mechanics, 2001, 41(1): 40–46. DOI: https://doi.org/10.1007/BF02323102.

    Google Scholar 

  30. NASSERI M H B, MOHANTY B. Fracture toughness anisotropy in granitic rocks [J]. International Journal of Rock Mechanics & Mining Sciences, 2008, 45(2): 167–193. DOI: https://doi.org/10.1016/j.ijrmms.2007.04.005.

    Google Scholar 

  31. ZHOU Z, LI X, LIU A, ZOU Y. Stress uniformity of split Hopkinson pressure bar under half-sine wave loads [J]. International Journal of Rock Mechanics & Mining Sciences, 2011, 48(4): 697–701. DOI: https://doi.org/10.1016/j.ijrmms.2010.09.006.

    Google Scholar 

  32. ZHANG Q B, ZHAO J. Effect of loading rate on fracture toughness and failure micromechanisms in marble [J]. Engineering Fracture Mechanics, 2013, 102(2): 288–309. DOI: https://doi.org/10.1016/j.engfracmech.2013.02.009.

    Google Scholar 

  33. IMANI M, NEJATI H R, GOSHTASBI K. Dynamic response and failure mechanism of Brazilian disk specimens at high strain rate [J]. Soil Dynamics and Earthquake Engineering, 2017, 100: 261–269. DOI: https://doi.org/10.1016/j.soildyn.2017.06.007.

    Google Scholar 

  34. YANG R, CHEN J, YANG L, FANG S, LIU J. An experimental study of high strain-rate properties of clay under high consolidation stress [J]. Soil Dynamics and Earthquake Engineering, 2017, 92: 46–51. DOI: https://doi.org/10.1016/j.soildyn.2016.09.036.

    Google Scholar 

  35. WANG Q Z, FENG F, NI M, GOU X P. Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar [J]. Engineering Fracture Mechanics, 2011, 78(12): 2455–2469. DOI: https://doi.org/10.1016/j.engfracmech.2011.06.004.

    Google Scholar 

  36. HAERI H, SHAHRIAR K, MARJI M F, MOAREFVAND P. Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks [J]. International Journal of Rock Mechanics & Mining Sciences, 2013, 67(4): 20–28. DOI: https://doi.org/10.1016/j.ijrmms.2014.01.008.

    Google Scholar 

  37. FAYE A, PARAMESWARAN V, BASU S. Dynamic fracture initiation toughness of PMMA: A critical evaluation [J]. Mechanics of Materials, 2016, 94: 156–169. DOI: https://doi.org/10.1016/j.mechmat.2015.12.002.

    Google Scholar 

  38. HAERI H, SARFARAZI V, ZHU Z. Effect of normal load on the crack propagation from preexisting joints using particle flow code (PFC) [J]. Computers and Concrete, 2017, 19(1): 99–110. DOI: https://doi.org/10.12989/cac.2017.19.1.099.

    Google Scholar 

  39. LANG L, ZHU Z M, DENG S, WANG L, NIU C Y, XIAO D J. Study on the arresting mechanism of two arrest-holes on moving crack in brittle material under impacts [J]. Engineering Fracture Mechanics, 2020, 229(39): 1–14. DOI: https://doi.org/10.1016/j.engfracmech.2020.10693.

    Google Scholar 

  40. ZHU Z. Numerical prediction of crater blasting and bench blasting [J]. International Journal of Rock Mechanics & Mining Sciences, 2009, 46(6): 1088–1096. DOI: https://doi.org/10.1016/j.ijrmms.2009.05.009.

    Google Scholar 

  41. ZHU Z, WANG C, KANG J, LI Y, WANG M. Study on the mechanism of zonal disintegration around an excavation [J]. International Journal of Rock Mechanics & Mining Sciences, 2014, 67(4): 88–95. DOI: https://doi.org/10.1016/j.ijrmms.2013.12.017.

    Google Scholar 

  42. YE W P. Origin 9.1 science and technology drawing and data analysis [M]. Beijing: Mechanical Industry Press, 2015: 299–319.

    Google Scholar 

  43. ZHOU Y X, XIA K, LI X B, LI H B, MA G W, ZHAO J, ZHOU Z L, DAI F. Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials [J]. International Journal of Rock Mechanics & Mining Sciences, 2012, 49(1): 105–112. DOI: https://doi.org/10.1016/j.ijrmms.2011.10.004.

    Google Scholar 

  44. XIE H P, SANDERSON D J. Fractal kinematics of crack propagation in geomaterials [J]. Engineering Fracture Mechanics, 1995, 50(4): 529–536. DOI: https://doi.org/10.1016/0013-7944(94)00203-T.

    Google Scholar 

  45. XIE H P, SANDERSON D J. Fractal effects of crack propagation on dynamic stress intensity factors and crack velocities [J]. International Journal of Fracture, 1986, 74: 29–42. DOI: https://doi.org/10.1007/BF00018573.

    Google Scholar 

  46. ROSE L R F. On the initial motion of a Griffith crack [J]. International Journal of Fracture, 1976, 12(6): 829–841. DOI: https://doi.org/10.1007/bf00034622.

    Google Scholar 

  47. BHAT H S, ROSAKIS A J, SAMMIS C G. A micromechanics based constitutive model for brittle failure at high strain rates [J]. Journal of Applied Mechanics, 2012, 79(3): 031016. DOI: https://doi.org/10.1115/1.4005897.

    Google Scholar 

  48. FREUND L B. Dynamic fracture mechanics [M]. Cambridge University Press, 1990.

  49. RAVI-CHANDAR K. Dynamic fracture [M]. Elsevier, 2004.

  50. FREUND L B, HUTCHINSON J W. Dynamic fracture mechanics [J]. Journal of Applied Mechanics, 1992, 59(1): 245. DOI: https://doi.org/10.1115/1.2899458.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe-ming Zhu  (朱哲明).

Additional information

Foundation item: Projects(11672194, U19A2098) supported by the National Natural Science Foundation of China; Project(2018SCU12047) supported by Fundamental Research Funds for the Central Universities, China; Project(2018JZ0036) supported by the Project of Science and Technology of Sichuan Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, L., Zhu, Zm., Wang, Hb. et al. Effect of loading rates on crack propagating speed, fracture toughness and energy release rate using single-cleavage trapezoidal open specimen under impact loads. J. Cent. South Univ. 27, 2440–2454 (2020). https://doi.org/10.1007/s11771-020-4460-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4460-5

Key words

关键词

Navigation