Skip to main content
Log in

Repair of automotive bumpers and bars with modified friction stir welding

改良搅拌摩擦焊修复汽车保险杠

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

This study reports the investigations for repair of thermoplastic based automotive bumpers and bars with modified friction stir welding (MFSW) process. For MFSW, consumable tool of polyamide6 (PA6) composite has been used for joining of acrylonitrile butadiene styrene (ABS) composites. The dissimilar thermoplastics were processed for maintaining a useful range of melt flow properties followed by preparation of feed stock filament for fused deposition modeling (FDM) process through screw extrusion. Finally, 3D printed PA6 based consumable rapid tool (RT) was prepared for MFSW. The joints prepared were subjected to flexural, hardness, morphological and thermal testing. The study has suggested the that maximum mechanical strength was obtained for sample welded at 1400 r/min, 50 mm/min transverse speed and 3 mm plunge depth, whereas the minimum mechanical strength was obtained for sample welded at 1000 r/min, 30 mm/min transverse speed and 2 mm plunge depth. The results are also supported with thermal analysis and photomicrographs.

摘要

本文研究了改良搅拌摩擦焊(MFSW)修复热塑性汽车保险杠。聚酰胺(PA6)复合材料常被用于改 良搅拌摩擦焊中连接丙烯腈丁二烯苯乙烯(ABS)复合材料。为保证有效范围内的熔体流动特性,对不 同的热塑性塑料进行了处理。然后,通过螺杆挤压制备了用于熔融沉积建模(FDM)过程的原料长丝。 最后,为改良搅拌摩擦焊制备了基于PA6 的3D 打印耗材快速模具(RT),并对制备的接头进行了弯曲、 硬度、形态和热性能测试。结果表明,在1400 r/min、50 mm/min 横向速度和3 mm 深度下焊接的样 品力学强度最大,在1000 r/min、30 mm/min 横向速度和2 mm 深度下焊接的样品力学强度最小,该 结果与热成像和显微结果一致。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. VELLAIYAN S, AMIRTHAGADESWARAN K S. Taguchigrey relational-based multi-response optimization of the water-in-diesel emulsification process [J]. Journal of Mechanical Science and Technology, 2016, 30(3): 1399–1404.

    Article  Google Scholar 

  2. JEON C S, JEONG Y H, HONG S T, HASAN M T, TIEN H N, HUR S H, KWON Y J. Mechanical properties of graphite/aluminum metal matrix composite joints by friction stir spot welding [J]. Journal of Mechanical Science and Technology, 2014, 28(2): 499–504.

    Article  Google Scholar 

  3. AHMADI H, ARAB N M, GHASEMI F A. Optimization of process parameters for friction stir lap welding of carbon fibre reinforced thermoplastic composites by Taguchi method [J]. Journal of Mechanical Science and Technology, 2014, 28(1): 279–284.

    Article  Google Scholar 

  4. JAFARI M, ABBASI M, POURSINA D, GHEYSARIAN A, BAGHERI B. Microstructures and mechanical properties of friction stir welded dissimilar steel-copper joints [J]. Journal of Mechanical Science and Technology, 2017, 31(3): 1135–1142.

    Article  Google Scholar 

  5. AHN E Y, DAS H, HONG S T, HAN K S, MILES M, LEE K J, PARK J W, HAN H N. Process responses and resultant joint properties of friction stir welding of dissimilar 5083 and 6061aluminum alloys [J]. Journal of Mechanical Science and Technology, 2017, 31(8): 3955–3960.

    Article  Google Scholar 

  6. BUFFA G, BAFFARI D, CAMPANELLA D, FRATINI L. An innovative friction stir welding based technique to produce dissimilar light alloys to thermoplastic matrix composite joints [J]. Procedia Manufacturing, 2016, 5: 319–331.

    Article  Google Scholar 

  7. KUMAR R, SINGH R, AHUJA I P S. Melt processing for enhancing compatibility of aluminum-reinforced acrylonitrile–butadiene–styrene and polyamide 6 for friction welding applications [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(8): 378.

    Article  Google Scholar 

  8. KUMAR R, SINGH R, AHUJA I P S. Investigations of mechanical, thermal and morphological properties of FDM fabricated parts for friction welding applications [J]. Measurement, 2018, 120: 11–20.

    Article  Google Scholar 

  9. SIMÕES F, RODRIGUES D M. Material flow and thermo-mechanical conditions during friction stir welding of polymers: Literature review, experimental results and empirical analysis [J]. Materials & Design, 2014, 59: 344–351.

    Article  Google Scholar 

  10. ABIBE A B, SÔNEGO M, DOS SANTOS J F, CANTO L B, AMANCIO-FILHO S T. On the feasibility of a friction-based staking joining method for polymer-metal hybrid structures [J]. Materials & Design, 2016, 92: 632–642.

    Article  Google Scholar 

  11. GONÇALVES J, DOS SANTOS J F, CANTO L B, AMANCIO-FILHO S T. Friction spot welding of carbon fiber-reinforced polyamide 66 laminate [J]. Materials Letters. 2015, 159(15): 506–509.

    Article  Google Scholar 

  12. GAO J, LI C, SHILPAKAR U, SHEN Y. Improvements of mechanical properties in dissimilar joints of HDPE and ABS via carbon nanotubes during friction stir welding process [J]. Materials & Design, 2015, 86: 289–296.

    Article  Google Scholar 

  13. SLUŻALEC A. Thermal effects in friction welding [J]. International Journal of Mechanical Sciences, 1990, 32(6): 467–478.

    Article  Google Scholar 

  14. STOKES V K, HOBBS S Y. Vibration welding of ABS to itself and to polycarbonate, poly (butylene terephthalate), poly (ether imide) and modified poly (phenylene oxide) [J]. Polymer, 1993, 34(6): 1222–1231.

    Article  Google Scholar 

  15. STOKES V K. The effect of fillers on the vibration welding of poly (butylene terephthalate) [J]. Polymer, 1993, 34(21): 4445–4454.

    Article  Google Scholar 

  16. YILMAZ M, ÇÖL M, ACET M. Interface properties of aluminum/steel friction-welded components [J]. Materials Characterization, 2002, 49(5): 421–429.

    Article  Google Scholar 

  17. ROTUNDO F, CESCHINI L, MORRI A, JUN T S, KORSUNSKY A M. Mechanical and microstructural characterization of 2124Al/25 vol.% SiCp joints obtained by linear friction welding (LFW) [J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(9): 1028–1037.

    Article  Google Scholar 

  18. PANNEERSELVAM K, LENIN K. Joining of Nylon 6 plate by friction stir welding process using threaded pin profile [J]. Materials & Design, 2014, 53: 302–307.

    Article  Google Scholar 

  19. FAES K, DHOOGE A, de BAETS P, van der DONCKT E, de WAELE W. Parameter optimisation for automatic pipeline girth welding using a new friction welding method [J]. Materials & Design, 2009, 30(3): 581–589.

    Article  Google Scholar 

  20. AMANCIO-FILHO S T, BUENO C, DOS SANTOS J F, HUBER N, HAGE J E. On the feasibility of friction spot joining in magnesium/fiber-reinforced polymer composite hybrid structures [J]. Materials Science and Engineering A, 2011, 528(10, 11): 3841–3848.

    Article  Google Scholar 

  21. KUMAR R, SINGH R, AHUJA I S, KARN K N. Joining of 3D printed dissimilar thermoplastics with friction welding: A case study [J]. Encyclopedia of Renewable and Sustainable Materials, 2019. DOI: https://doi.org/10.1016/B978-0-12-803581-8.11530-9.

  22. BANG H S, DAS A, LEE S. Friction stir lap joining of automotive aluminium alloy and carbon-fiber-reinforced plastic [J]. IOP Conference Series: Materials Science and Engineering, 2018, 369(1): 012033.

    Article  Google Scholar 

  23. ATTALLAH M M, PREUSS M. Inertia friction welding (IFW) for aerospace applications [J]. Welding and Joining of Aerospace Materials, 2012: 25–74.

  24. RAAB U, LEVIN S, WAGNER L, HEINZE C. Orbital friction welding as an alternative process for blisk manufacturing [J]. Journal of Materials Processing Technology, 2015, 215: 189–192.

    Article  Google Scholar 

  25. HAGHSHENAS M, GERLICH A P. Joining of automotive sheet materials by friction-based welding methods: A review [J]. Engineering Science and Technology, An International Journal, 2018, 21(1): 130–148.

    Article  Google Scholar 

  26. GHARAHSHIRAN M R, KHOSHAKHLAGH A, KHALAJ G, BAKHTIARI H, BANIHASHEMI A R. Effect of postweld heat treatment on interface microstructure and metallurgical properties of explosively welded bronze— Carbon steel [J]. Journal of Central South University, 2018, 25(8): 1849–1861.

    Article  Google Scholar 

  27. YILMAZ I O, BILICI A Y, AYDIN H. Microstructure and mechanical properties of dissimilar resistance spot welded DP1000-QP1180 steel sheets [J]. Journal of Central South University, 2019, 26(1): 25–42.

    Article  Google Scholar 

  28. YUSOF N S, SAPUAN S M, SULTAN M T, JAWAID M. Conceptual design of oil palm fibre reinforced polymer hybrid composite automotive crash box using integrated approach [J]. Journal of Central South University, 2020, 27(1): 64–75.

    Article  Google Scholar 

  29. KUMAR D, MUTHUKUMARAN S, XAVIER V, VENKATESWARAN T, SIVAKUMAR D. Investigation of weld parameters on ductility, onion ring and fracture behaviour of friction stir welded AA2219-T87 [J]. Journal of Central South University, 2019, 26(9): 2318–2327.

    Article  Google Scholar 

  30. YANG X W, FENG W Y, LI W Y, CHU Q, XU Y X, MA T J, WANG W B. Microstructure and mechanical properties of dissimilar pinless friction stir spot welded 2A12 aluminum alloy and TC4 titanium alloy joints [J]. Journal of Central South University, 2018, 25(12): 3075–3084.

    Article  Google Scholar 

  31. AMINI K, GHARAVI F. Corrosion behavior of dissimilar copper/brass joints welded by friction stir lap welding in alkaline solution [J]. Journal of Central South University, 2019, 26(6): 1573–1581.

    Article  Google Scholar 

  32. SADIGH M A, MARAMI G, PAYGOZAR B. Failure simulation in resistance spot-welded lap-joints using cohesive zone modeling [J]. Journal of Central South University, 2018, 25(11): 2567–2577.

    Article  Google Scholar 

Download references

Acknowledgement

The authors are highly thankful to Board of Research in Nuclear Science (BRNS) No: 34/14/10/2016-BRNS/34036 and Center for Manufacturing Research, GNDEC, Ludhiana for providing financial/technical assistance to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupinder Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Singh, R. & Ahuja, I.P.S. Repair of automotive bumpers and bars with modified friction stir welding. J. Cent. South Univ. 27, 2239–2248 (2020). https://doi.org/10.1007/s11771-020-4445-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4445-4

Key words

关键词

Navigation