Skip to main content
Log in

Improved pedestrian detection with peer AdaBoost cascade

基于朋辈AdaBoost 分类器级联的行人检测

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Focusing on data imbalance and intraclass variation, an improved pedestrian detection with a cascade of complex peer AdaBoost classifiers is proposed. The series of the AdaBoost classifiers are learned greedily, along with negative example mining. The complexity of classifiers in the cascade is not limited, so more negative examples are used for training. Furthermore, the cascade becomes an ensemble of strong peer classifiers, which treats intraclass variation. To locally train the AdaBoost classifiers with a high detection rate, a refining strategy is used to discard the hardest negative training examples rather than decreasing their thresholds. Using the aggregate channel feature (ACF), the method achieves miss rates of 35% and 14% on the Caltech pedestrian benchmark and Inria pedestrian dataset, respectively, which are lower than that of increasingly complex AdaBoost classifiers, i.e., 44% and 17%, respectively. Using deep features extracted by the region proposal network (RPN), the method achieves a miss rate of 10.06% on the Caltech pedestrian benchmark, which is also lower than 10.53% from the increasingly complex cascade. This study shows that the proposed method can use more negative examples to train the pedestrian detector. It outperforms the existing cascade of increasingly complex classifiers.

摘要

针对训练数据不平衡和类内差异,本文提出了使用等同复杂度AdaBoost 分类器的级联来检测 行人,称为朋辈级联。利用难负样本挖掘操作,贪婪训练一系列的AdaBoost 阶段分类器。朋辈级联 不限制分类器的复杂度,从而得以利用更多负训练样本。并且,本文级联成为了强朋辈分类器的集成, 从而能在一定程度上应对行人的类内差异。为就地训练出高检测率的AdaBoost 分类器,提出提纯操 作来丢弃一些难负样本。提纯操作替代以往直接降低分类器阈值的操作,保留了每个分类器的训练优 化性能。实验结果表明,在Inria 和Caltech pedestrian benchmark 两个公开行人数据集,使用聚合通道 特征(ACF)朋辈级联的检测性能比现有逐渐复杂分类器级联的检测性能好很多。使用RPN 提取的深度 学习特征时,朋辈级联的性能明显更好。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LI J, LIANG X, SHEN S, XU T, FENG J, YAN S. Scale-aware fast R-CNN for pedestrian detection [J]. IEEE Transactions on Multimedia, 2018, 20(4): 985–996. DOI: https://doi.org/10.1109/TMM.2017.2759508.

    Google Scholar 

  2. BRAZIL G, LIU X. Pedestrian detection with autoregressive network phases [C]// Computer Vision and Pattern Recognition (CVPR). IEEE, 2019: 7231–7240. DOI: https://doi.org/10.1109/CVPR.2019.00740.

  3. XIA Li-min, HU Xiang-jie, WANG Jun. Anomaly detection in traffic surveillance with sparse topic model [J]. Journal of Central South University, 2018, 25(9): 2245–2257. DOI: https://doi.org/10.1007/s11771-018-3910-9.

    Article  Google Scholar 

  4. DALAL N, TRIGGS B. Histograms of oriented gradients for human detection [C]// Computer Vision and Pattern Recognition (CVPR). IEEE, 2005: 886–893. DOI: https://doi.org/10.1109/CVPR.2005.177.

  5. BENENSON R, MATHIAS M, TUYTELAARS T, GOOL L V. Seeking the strongest rigid detector [C]// Computer Vision and Pattern Recognition (CVPR). IEEE, 2013. DOI: https://doi.org/10.1109/CVPR.2013.470.

  6. YAN Y, REN J, ZHAO H, SUN G, WANG Z, ZHENG J, MARSHALL S, SORAGHAN J J. Cognitive fusion of thermal and visible imagery for effective detection and tracking of pedestrians in videos [J]. Cognitive Computation, 2018, 10(1): 94–104. DOI: https://doi.org/10.1007/s12559-017-9529-6.

    Article  Google Scholar 

  7. FELZENSZWALB P F, GIRSHICK R, MCALLESTER D, RAMANAN D. Object detection with discriminatively trained part-based models [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627–1645. DOI: https://doi.org/10.1109/TPAMI.2009.167.

    Article  Google Scholar 

  8. OUYANG W, ZENG X, WANG X. Learning mutual visibility relationship for pedestrian detection with a deep model [J]. International Journal of Computer Vision, 2016, 120(1): 14–27. DOI: https://doi.org/10.1007/s11263-016-0890-9.

    Article  MathSciNet  Google Scholar 

  9. CHEN Y, ZHANG L, LIIU X, CHEN C. Pedestrian detection by learning a mixture mask model and its implementation [J]. Information Sciences, 2016, 372: 148–161. DOI: https://doi.org/10.1016/j.ins.2016.08.050.

    Article  Google Scholar 

  10. DOLLAR P, APPEL R, BELONGIE S, PERONA P. Fast feature pyramids for object detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(8): 1532–1545. DOI: https://doi.org/10.1109/TPAMI.2014.2300479.

    Article  Google Scholar 

  11. HUANG C, LOY C C, TANG X. Discriminative sparse neighbor approximation for imbalanced learning [J]. IEEE Transactions on Neural Networks, 2018, 29(5): 1503–1513. DOI: https://doi.org/10.1109/tnnls.2017.2671845.

    Article  Google Scholar 

  12. LIN T, GOYAL P, GIRSHICK R, HE K, DOLLAR P. Focal loss for dense object detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318–327. DOI: https://doi.org/10.1109/TPAMI.2018.2858826.

    Article  Google Scholar 

  13. ZHANG X, ZHU C, WU H, LIU Z, XU, Y. An imbalance compensation framework for background subtraction [J]. IEEE Transactions on Multimedia, 2017, 19(11): 2425–2438. DOI: https://doi.org/10.1109/TMM.2017.2701645.

    Article  Google Scholar 

  14. ZHANG L, LIN L, LIANG X, HE K. Is faster RCNN doing well for pedestrian detection? [C]// European Conference on Computer Vision. 2016: 443–457. DOI: https://doi.org/10.1007/978-3-319-46475-628.

  15. WENG R, LU J, TAN Y, ZHOU J. Learning cascaded deep auto-encoder networks for face alignment [J]. IEEE Transactions on Multimedia, 2016, 18(10): 2066–2078. DOI: https://doi.org/10.1109/TMM.2016.2591508.

    Article  Google Scholar 

  16. CAI Z, VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection [C]// Computer Vision and Pattern Recognition (CVPR). IEEE, 2018. DOI: https://doi.org/10.1109/cvpr.2018.00644.

  17. BOURDEV L, BRANDT J. Robust object detection via soft cascade [C]// Computer Vision and Pattern Recognition (CVPR). IEEE, 2005. DOI: 10.1109/CVPR.2005.310.

  18. WEN G, HOU Z, LI H, LI D, JIANG L, XUN, E. Ensemble of deep neural networks with probability-based fusion for facial expression recognition [J]. Cognitive Computation, 2017, 9(5): 597–610. DOI: https://doi.org/10.1007/s12559-017-9472-6.

    Article  Google Scholar 

  19. VIOLA P, JONES M J. Robust real-time face detection [J]. International Journal of Computer Vision, 2004, 57(2): 137–154. DOI: https://doi.org/10.1023/B:VISI.0000013087.49260.fb.

    Article  Google Scholar 

  20. FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting [J]. Conference on Learning Theory, 1997, 55(1): 119–139. DOI: https://doi.org/10.1006/jcss.1997.1504.

    MathSciNet  MATH  Google Scholar 

  21. FU Hong-pu, ZOU Bei-ji. A fast training method for AdaBoost classifier [J]. Journal of Yunnan University: Natural Sciences Edition, 2020, 42(1): 50–57. DOI: https://doi.org/10.7540/j.ynu.20190214. (in Chinese)

    MathSciNet  MATH  Google Scholar 

  22. WEI Gao, HOU Zhi-hua. On the doubt about margin explanation of boosting [J]. Artificial Intelligence, 2013: 1–18. DOI: https://doi.org/10.1016/j.artint.2013.07.002.

  23. DOLLAR P, WOJEK C, SCHIELE B, PERONA P. Pedestrian detection: An evaluation of the state of the art [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4): 743–761. DOI: https://doi.org/10.1109/TPAMI.2011.155.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-zhang Zhu  (朱承璋).

Additional information

Foundation item: Project(2018AAA0102102) supported by the National Science and Technology Major Project, China; Project(2017WK2074) supported by the Planned Science and Technology Project of Hunan Province, China; Project(B18059) supported by the National 111 Project, China; Project(61702559) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Hp., Zou, Bj., Zhu, Cz. et al. Improved pedestrian detection with peer AdaBoost cascade. J. Cent. South Univ. 27, 2269–2279 (2020). https://doi.org/10.1007/s11771-020-4448-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4448-1

Key words

关键词

Navigation