Skip to main content
Log in

Response analysis of MEMS based high-g acceleration threshold switch under mechanical shock

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

Failures of MEMS devices under shock are due to the overlap of the static and moving parts. The shock response of the microstructure under mechanical shock is investigated in this paper. This work presents modelling and simulation of the microstructures such as microcantilever, fixed–fixed flexure and serpentine structure and is further extended to optimize the response of high-g acceleration threshold switch under mechanical shock. The latching threshold for the high-g acceleration switch is estimated using the geometrical structure. The natural frequency of the serpentine spring-mass structure is selected to achieve the required displacement for latching. The dimensions of the switch are optimized in accordance with the natural frequency and to meet the requirement of latching for a given shock. The switch is fabricated on silicon on insulator wafer with a deep reactive ion etching process. The switch is tested on the static mechanical shock of 3500 g and shows a good agreement between analytical, numerical and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abott, E.J., Firestone, F.A.: Specifying surface quality- a method based on the accurate measurement and comparison. Mech. Eng. 55, 569–572 (1933)

    Google Scholar 

  • Brown, T.G., Davis, B., Hepner, D., Faust, J., Myers, C., Muller, C., Harkins, T., Hollis, M., Miller, C., Placzankis, B.: Strap- down microelectromechanical (MEMS) sensors for high-g munition applications. IEEE Trans. Magn. 37(1), 336–342 (2001)

    Article  Google Scholar 

  • Brown, T.G., Davis, B.S.: Dynamic high-g loading of MEMS sensors: ground and flight testing. Proc. SPIE Int. Soc. Opt. Eng. 3512, 228–235 (1998)

    Google Scholar 

  • Brown, T.G.: Harsh military environments and microelectromechanical (MEMS) devices. In: SENSORS, vol. 2, pp. 753–760. IEEE, Toronto (2003)

    Google Scholar 

  • Cai, H., Ding, G., Yang, Z., Su, Z., Zhou, J., Wang, H.: Conception, fabrication and characterization of a silicon based MEMS inertial switch with a threshold value of 5 g. J. Micromech. Microeng. 27, 125001 (2008)

    Google Scholar 

  • Ciarlo, D.R.: A latching accelerometer fabricated by the anisotropic etching of (110) oriented silicon wafers. J. Micromech. Microeng. 2, 10–13 (1992)

    Article  Google Scholar 

  • Cordes, J.A., Vo, P., Lee, J.R., Geissler, D.W., Metz, J.D., Troast, D.C., Totten, A.L.: Comparison of shock response spectrum for different gun tests. Shock Vib. 20, 481–491 (2013)

    Article  Google Scholar 

  • Coster, J.D., Thilmans, H.C., van Beek, J.T.M., Rijks, T.G.S.M., Puers, R.: The influence of mechanical shock on the operation of electrostatically driven RF-MEMS switches. J. Micromech. Microeng. 14(9), S49–S54 (2004)

    Article  Google Scholar 

  • Cunningham, S., McIntyre, D., Carper, J., Jaramillo, P., Tang, W.C.: Microstructures designed for shock robustness. Proc. SPIE Int. Soc. Opt. Eng. 2880, 99–107 (1996)

    Google Scholar 

  • Curranoa, L.J., Baumanb, S., Churamanc, W., Peckerab, M., Wienkeb, J., Kimb, S., Yud, M., Balachandrand, B.: Latching ultra-low power MEMS shock sensors for acceleration monitoring. Sensors Actuators A 147(2008), 490–497 (2007)

    Google Scholar 

  • Dang, V.H., Nguyen, D.A., Le, M.Q., Doung, T.H.: Nonlinear vibration of nanobeams under electrostatic force based on the nonlocal strain gradient theory. Int. J. Mech. Mater. Des. 16, 289–308 (2020)

    Article  Google Scholar 

  • Fan, M.S., Shaw, H.C.: Dynamic response assessment for the MEMS accelerometer under severe shock loads. Nat. Aeronautics and Space Admin. NASA, Washington, DC TP—2001–209978 (2001)

  • Fang, X.W., Huang, Q.A., Tang, J.Y. (2004) Modeling of MEMS reliability in shock environments. In: Proceedings of 7th International Conference Solid-State and Integrated Circuits Technolgy, Beijing, China, pp. 860–863 (2004)

  • Fedder, G.K.: Simulation of MicroElectroMechanical Systems. Ph.D. Thesis, UC Berkeley (1994)

  • Forsat, M.: Investigating nonlinear vibtrations of highier-order hyper-elastic beams using the Hamiltonian method. Acta Mech. (2019). https://doi.org/10.1007/s00707-019-02533-5

    Article  Google Scholar 

  • Guo, Z.Y., Zhao, Q.C., Lin, L.T., Ding, H.T., Liu, X.S., Cuil, J., Yang, Z.C., Xie, H., Yan, G.Z.: An acceleration switch with a robust latching mechanism and cylindrical contacts. J. Micromech. Microeng. 20, 055006 (2010)

    Article  Google Scholar 

  • Harris, C.M., Piersol, A.G., Paez, T.L.: Shock and Vibration Handbook. McGraw-Hill, New York (1961)

    Google Scholar 

  • Holm, R.: Electric Contacts: Theory and Applications. Springer, Berlin (1969)

    Google Scholar 

  • Hui, J., Gao, M., Wang, Y., Cheng, C.: A research method for shock loadings on rotation isolator used in course correcting fuse. Eng. Lett. 26, 32–44 (2018)

    Google Scholar 

  • Jiang, Y., Du, M., Huang, W., Xu, W., Luo, L.: Simulation on the encapsulation effect of the high-g shock MEMS accelerometer. In: Proceedings of 5th International Conference on Electronics Packaging Technology, Shanghai, China, pp. 52–55 (2003)

  • Kivi, A.R., Azizi, S., Khalkhali, A.: Sensitivity enhancement of a MEMS sensor in nonlinear regime. Int. J. Mech. Mater. Des. 12, 1573–8841 (2015)

    Google Scholar 

  • Li, G.X., Shemansky, J.R.: Drop test and analysis on micro-machined structures. Sens. Actuators A Phys. 85(1–3), 280–286 (2000)

    Article  Google Scholar 

  • Meirovitch, L.: Fundamentals of Vibrations. McGraw-Hill, Boston (2001)

    Book  Google Scholar 

  • Mirjavadi, S.S., Afshari, B.M., Barati, M.R., Hanounda, A.M.S.: Transient response of porous inhomogeneous nanobeams due to various impulsive loads based on nonlocal strain gradient elasticity. Int. J. Mech. Mater. Des. 16, 1573–8841 (2019a)

    Google Scholar 

  • Mirjavadi, S.S., Forsat, M., Nikookar, M., Barati, M.R.: Nonlinear forced vibtrations of sandwich smart nanobeams with two-phase piezo-magnetic face sheets. Eur. Phys. J. Plus 134, 508 (2019b)

    Article  Google Scholar 

  • Mohammadi, M., Eghtesad, M., Mohammadi, H.: Stochastic analysis of dynamic characteristics and pull-in instability of FGM micro-switches with uncertain parameters in thermal environments. Int. J. Mech. Mater. Des. 14, 1573–8841 (2017)

    Google Scholar 

  • Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Reduced-order models for MEMS applications. Nonlinear Dyn. 41(1–3), 211–236 (2005)

    Article  MathSciNet  Google Scholar 

  • Petersen, K.E.: Silicon as a mechanical material. IEEE 70, 420 (1982)

    Article  Google Scholar 

  • Qian, Z., Tomase, J., Lian, K. (2004) Mechanical simulation for the robust design of RF-MEMS switches. In: Proceedings of ASME International Conference Mechanical Engineering Congress and Exposition (MEMS), Anaheim, CA, CD-ROM, Paper IMECE2004- 60112 (2004)

  • Shigley, J., Mischke, C., Budynas, R.: Mechanical Engineering Design. McGraw-Hill, New York (2004)

    Google Scholar 

  • Srikar, V.T., Senturia, S.D.: The reliability of microelectromechanical systems (MEMS) in shock environments. J. Microelectromech. Syst. 11(3), 206–214 (2002)

    Article  Google Scholar 

  • Suhir, E.: Could shock tests adequately mimic drop test conditions? Trans. ASME J. Electron. Packag. 124(3), 170–177 (2002)

    Article  Google Scholar 

  • Tanner, D.M., Walraven, J.A., Helgesen, K., Irwin, L.W., Smith, N.F., Master, N.: MEMS reliablility in shock environments. In: IEEE International Reliability Physics Symposium, pp 129–138 (2000)

  • Tas, N., Sonnenberg, T., Jansen, H., Legtenberg, R., Elwenspoek, M.: Stiction in surface micromachining. J. Micromech. Microeng. 6(4), 385–397 (1996)

    Article  Google Scholar 

  • Yang, Z., Ding, G., Cai, H., Zhao, X.: A MEMS inertia switch with bridge-type elastic fixed electrode for long duration contact. IEEE Trans. Electron Devices 55(9), 2492–2497 (2008)

    Article  Google Scholar 

  • Younis, M.I., Miles, R., Jordy, D.: Investigation of the response of microstructures under the combined effect of mechanical shock and electrostatic forces. J. Micromech. Microeng. 16(11), 2463–2474 (2006)

    Article  Google Scholar 

  • Zhang, F., Wang, C., Yuan, M., Tang, B., Xiong, Z.: Design, simulation and fabrication of a novel contact-enhanced MEMS inertial switch with a movable contact point. J. Micromech. Microeng. 27, 125001 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunita Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Kumar, V., Saini, A. et al. Response analysis of MEMS based high-g acceleration threshold switch under mechanical shock. Int J Mech Mater Des 17, 137–151 (2021). https://doi.org/10.1007/s10999-020-09520-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-020-09520-y

Keywords

Navigation