Skip to main content
Log in

Electron density profile inside a cylindrical plasma with elliptical cross section in a microwave discharge

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In a microwave discharge, the profile of electron number density inside a cylindrical plasma with elliptic cross section is analytically calculated. Using separation of variables way for the electron continuity equation (as function of position and time) and so solving it, the electron number density profile is calculated. It is shown that the profile of electron number density in a cylindrical plasma with elliptical cross section is in the form of Mathieu functions. The characteristic diffusion length for the elliptical cylinder plasma is obtained, and it is seen that it is different with the characteristic diffusion length for the circular cylinder plasma. In the steady state, the normalized density profiles of lowest even and odd modes are plotted. Furthermore, the components of normalized electron number density gradient are plotted. In the limit that plasma cylinder with elliptical cross section being converted to plasma cylinder with circular cross section, the obtained results are confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J Reece Roth Industrial Plasma Engineering’ (1995)

  2. R J Exton, R J Balla and B Shirinzadeh Phys. Plasmas 8 5013 (2001)

    Article  ADS  Google Scholar 

  3. Y B Golubovskii, R V Kozakov, V A Maiorov, A V Meshchanov, I A Porokhova and A Rousseau J. Phys. D: Appl. Phys. 37 868 (2004)

    Article  ADS  Google Scholar 

  4. M Mesko, Z Bonaventura, P Vašina, V Kudrle, A Talsky, D Trunec, Z Frgala and J Janca Plasma Sources Sci. Technol. 15 574(2006)

    Article  ADS  Google Scholar 

  5. V M Shibkov et.al. 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno Nevada (2007)

  6. K V Khodataev J. Propul. Power 24 962 (2008)

    Article  Google Scholar 

  7. Y Hidaka, E M Choi, I Mastovsky, M A Shapiro, J R Sirigiri, and R J Temkin Phys. Rev. Lett. 100 035003 (2008)

    Article  ADS  Google Scholar 

  8. Y Ichikawa, T Sakamoto, A Nezu, H Matsuura and H Akatsuka Japanese Journal of Applied Physics 49 106101 (2010)

    Article  ADS  Google Scholar 

  9. J Benford, J A Swegle and E Schamiloglu High Power Microwaves (2007). (CRC Press, 2007)

  10. M ALieberman and A J Lichtenberg Wiley, New Jersey (2005)

  11. S P Kuo, Y S Zhang, M C Lee, Paul Kossey and R J Barker Radio Sci. 27 851 (1992)

    Article  ADS  Google Scholar 

  12. D Knight J. Propul. Power, 2008, 24 1153 (2008)

  13. C L Yee, A W Ali, W M Bollen J. Appl. Phys. 54(3) 1278 (1983)

    Article  ADS  Google Scholar 

  14. M Baeva, A Pott and J Uhlenbusch Plasma Sources Sci. Technol. 11 135 (2002)

    Article  ADS  Google Scholar 

  15. Z Bonaventura, D Trunec, M Mesko, P Vasina and V Kudrle J. Phys. D: Appl. Phys. 41 015210 (2008)

    Article  ADS  Google Scholar 

  16. S K Nam and J P VerboncoeurPhys. Rev. Lett. 103 055004 (2009)

    Article  ADS  Google Scholar 

  17. J P Boeuf, B Chaudhury and G Zhu Phys. Rev. Lett.104 015002 (2010)

    Article  ADS  Google Scholar 

  18. V E Semenov, E I Rakova, V P Tarakanov, M Y Glyavin and G S Nusinovich Phys. Plasmas 22 092308 (2015)

    Article  ADS  Google Scholar 

  19. P Zhao, L Guo and K Shu Phys. Plasmas 23 092105 (2016)

    Article  ADS  Google Scholar 

  20. W Yang, Q Zhou and Z Dong Journal of Applied Physics 123 013301 (2018)

    Article  ADS  Google Scholar 

  21. H Yamada, A Chayahara and Y Mokuno Journal of Applied Physics 101 063302 (2007)

    Article  ADS  Google Scholar 

  22. Y A Lebedev Journal of Physics: Conference Series 257 012016 (2010)

    Google Scholar 

  23. J Mizeraczyk, M Jasinski, M Dorsa and Z Zakrzewski AIP Conference Proceedings 993https://doi.org/10.1063/1.2909131 (2008)

  24. L Latrasse, M Radoiu, J Juslan Lo and P Guillot Journal of Microwave Power and Electromagnetic Energy 50 308 (2016)

    Article  Google Scholar 

  25. Y A Lebedev Plasma Sources Sci. Technol. 24 053001 (2015)

    Article  ADS  Google Scholar 

  26. HE Ziming, M A Prilas, J M Meese and L T Lin Laser and Particle Beams 16 509 (1998)

    Article  ADS  Google Scholar 

  27. Y A Lebedev, A V Tatarinov and I L Epstein Plasma Chemistry and Plasma Processing 39 787 (2019)

    Article  Google Scholar 

  28. Yu A Lebedev, A V Tatarinov, I L Epstein and K A Averin (2016) Plasma Chemistry and Plasma Processing 36 535 (2016)

  29. Yu A Lebedev, A V Tatarinov, I L Epstein and I V Bilera J Phys D Appl Phys 51 214007 (2018)

    Article  Google Scholar 

  30. K A Averin, Yu A Lebedev, I LEpstein, V A Shakhatov and I V Bilera Plasma Process Polym 16 e1800198 (2019)

    Article  Google Scholar 

  31. N M McLachlan Theory and Application of Mathieu Functions Dover, New York (1964)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Abdoli Arani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eghbali, Z., Abdoli Arani, A. Electron density profile inside a cylindrical plasma with elliptical cross section in a microwave discharge. Indian J Phys 95, 1557–1562 (2021). https://doi.org/10.1007/s12648-020-01828-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01828-x

Keywords

Navigation