Skip to main content
Log in

Prediction of the density–pressure–temperature behavior in the isotropic–nematic phase transition of MBBA liquid crystal

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this work, it is proposed a perturbation theory in conjunction with the Convex Peg HERSW model and an adjustable intermolecular potential. The perturbation theory developed can quantitatively predict the density–pressure–temperature experimental behavior at the isotropic–nematic phase transition of MBBA at 1 atm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. S Chandrasekhar Liquid Crystals, (London: Cambridge University Press) (1975)

    Google Scholar 

  2. O M Abdul-Aziz, J R Abdul-Karim, A Mohammed and A O Karar J. Babylon University, Pure and Applied Sciences, 21 1764 (2013)

    Google Scholar 

  3. G W Gray, KJ Harrison and J A Nash Electron. Lett. 9 130 (1973)

    ADS  Google Scholar 

  4. B Bahadur, Liquid Crystal, Applications and Uses, 2nd edn. (Singapore: World Scientific Publishing Co. Pte. Ltd.), vol. 3 (1992)

  5. H Kelker and B Scheurle Angew. Chem. Int. Ed. 8 884 (1969)

    Google Scholar 

  6. J Biresaw Tribology and the Liquid-Crystalline State (Florida: American Chemical Society) (1989)

    Google Scholar 

  7. J Deschamps, J P Martín and G Jackson J. Phys. Chem. B, 112 3918 (2008)

    Google Scholar 

  8. E Kuss Mol. Cryst. Liq. Cryst. 47 71 (1978)

    Google Scholar 

  9. JW Emsley, G R Luckurst and B A Timimi J. Physique, 48 173 (1987)

    Google Scholar 

  10. M Sandmann, F Hamann and A Würflinger Z. Naturforsch. 52a 739 (1997)

    ADS  Google Scholar 

  11. L Onsager Ann. N. Y. Acad. 51 627 (1949)

    ADS  Google Scholar 

  12. V W Maier and A Saupe Z Naturforsch. 13 564 (1958); 14 882 (1959); 15 287 (1960)

  13. H Kimura J. Physics. Soc. Jpn. 36 1280 (1974)

    ADS  Google Scholar 

  14. J D Parsons Phys. Rev. A. 19 1225 (1979)

    ADS  Google Scholar 

  15. SD Lee J. Chem. Phys. 87 4972 (1987)

    ADS  Google Scholar 

  16. SD Lee J. Chem. Phys. 89 7036 (1988)

    ADS  Google Scholar 

  17. NF Carnahan and KE Starling J. Chem. Phys. 51 635 (1969)

    ADS  Google Scholar 

  18. LV Yelash, T Kraska, EA Muller and NF Carnahan Phys. Chem. Chem. Phys. 1 4919 (1999)

    Google Scholar 

  19. E García-Sánchez, A Martínez-Richa, JA Villegas-Gasca, LH Mendoza-Huizar and A Gil-Villegas J. Chem. Phys. A. 106 10342 (2002)

    Google Scholar 

  20. A Martínez-Richa, E García-Sánchez and D C Williamson Rev. Méx. Ing. Quím. 2 35 (2003)

    Google Scholar 

  21. E García-Sánchez, L H Mendoza-Huizar, J Álvarez-Lozano, C Rentería-Muñoz and M A Flores-Gómez Rev. Méx. Fís. 53 179 (2007)

    Google Scholar 

  22. E García-Sánchez, F J Martínez and L H Mendoza-Huizar Inf. Tec. 20 39 (2009)

    Google Scholar 

  23. A E González-Cabrera, E García-Sánchez and L H Mendoza-Huizar J. Mol. Liq. 149 22 (2009)

    Google Scholar 

  24. E García-Sánchez, J M Cervantes-Viramontes and C H Castañeda-Ramírez Ingeniería Investigación y Tecnología 2 157 (2011)

    Google Scholar 

  25. E García-Sánchez, A E González-Cabrera, L H Mendoza-Huizar and P de Lira-Gómez Afinidad 12 259 (2012)

  26. M A Cotter J. Chem. Phys. 66 4710 (1977)

    ADS  Google Scholar 

  27. WM Gelbart and BA Baron J. Chem. Phys. 66 207 (1977)

    ADS  Google Scholar 

  28. W.M. Gelbart and B. Barboy, Acc. Chem. Res. 13 290 (1980)

    Google Scholar 

  29. P G Bolhuis, A Stroobants, D Frenkel and H N W Lekkerkerker J. Chem. Phys. 107 1551 (1997)

    ADS  Google Scholar 

  30. D C Williamson Mol. Phys. 95 319 (1998)

    MathSciNet  ADS  Google Scholar 

  31. P I C Teixeira Mol. Phys. 96 805 (1999)

    ADS  Google Scholar 

  32. D C Williamson and F del Rio J. Phys. Chem. B. 109 4675 (1998)

    Google Scholar 

  33. D C Williamson and Y Guevara J. Phys. Chem. B. 103 7522 (1999)

    Google Scholar 

  34. E García-Sánchez, L H Mendoza-Huizar, U Ramírez-García, I A Sustaita and F Alvarado Braz. J. Phys. 45 258 (2015)

    ADS  Google Scholar 

  35. S C McGrother, A Gil-Villegas and G Jackson J. Phys. Condens. Matt. 8 9649 (1996)

    ADS  Google Scholar 

  36. B Groh and S Dietrich Phys. Rev. E. 55 2892 (1997)

    ADS  Google Scholar 

  37. A Gil-Villegas, S C McGrother and G Jackson Chem. Phys. Lett. 269 441 (1997)

    ADS  Google Scholar 

  38. S C McGrother, A Gil-Villegas and G Jackson Mol. Phys. 95 657 (1998)

    ADS  Google Scholar 

  39. S Varga, I Szalai, J Liszi and G Jackson J. Chem. Phys. 116 9107 (2002)

    ADS  Google Scholar 

  40. D C Williamson, N A Thacker and S R Williamson Phys. Rev. E 71 021702 (2005)

    ADS  Google Scholar 

  41. S Varga and G Jackson Mol. Phys. 104 3681 (2006)

    ADS  Google Scholar 

  42. H H Wensink and G Jackson J. Chem. Phys. 130 234911 (2009)

    ADS  Google Scholar 

  43. H H Wensink and G Jackson J. Phys. Condens. Matt. 23 194107 (2011)

    ADS  Google Scholar 

  44. J E Lennard-Jones Proc. Roy. Soc. Lond. A 106 463 (1924)

  45. T Kihara J. Phys. Soc. Japan 6 289 (1951)

  46. S Chandrasekhar and N V Madhusudana Acta Cryst. A 27 303 (1971)

    Google Scholar 

  47. S DasGupta, S Shabnam, S Pramanick, N Ghoshal, A DasGupta and S K Roy Phys. Rev. E 98 022701-1 (2018)

    ADS  Google Scholar 

  48. T Shirakawa, H Eura, H Ichimura, T Ito, K Toi and T Seimiya Thermochimica Acta 105 251 (1986)

    Google Scholar 

Download references

Acknowledgements

EGS acknowledges financial support from Universidad Autónoma de Zacatecas. LHMH gratefully acknowledges financial support from CONACYT (Project CB2015-257823) and to the Universidad Autónoma del Estado de Hidalgo. Guanajuato National Laboratory (CONACyT 123732) is acknowledged for supercomputing resources. LHMH acknowledges to the SNI for the distinction of their membership and the stipend received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. García-Sánchez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Sánchez, E., Mendoza-Huizar, L.H., Martínez-Ruíz, F.J. et al. Prediction of the density–pressure–temperature behavior in the isotropic–nematic phase transition of MBBA liquid crystal. Indian J Phys 95, 1357–1363 (2021). https://doi.org/10.1007/s12648-020-01826-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01826-z

Keywords

Navigation