Skip to main content
Log in

Effects of experimental warming and nutrient enrichment on wetland communities at the Arctic’s edge

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Global warming-related changes to freshwater ecosystems in Arctic and Subarctic regions have been magnified by nutrient input from increasing waterfowl populations. To gain insight into how these changes might affect ecosystem function, we conducted a mesocosm experiment in the Subarctic by enriching N and P (1 ×, 10 ×, and 20 × treatments) and increasing mean water temperatures ≤ 3°C. We measured responses of two species of larval amphibians, periphyton, and phytoplankton. Wood frog (Rana sylvatica) larvae developed quicker (odds ratio [OR] for 1°C increase = 0.903, 95% CI 0.892–0.912) and were more likely to metamorphose (OR 1.076, 95% CI 0.022–14.73) in warmer waters. Boreal chorus frogs (Pseudacris maculata) also developed quicker with warmer temperatures (OR 0.880, 95% CI 0.860–0.900), despite a non-significant trend toward reduced survival (OR 0.853, 95% CI 0.696–1.039). Periphyton and phytoplankton concentrations increased with nutrient additions, as did size of wood frog metamorphs. Periphyton and phytoplankton did not vary with temperature, but periphyton was limited by tadpole abundance. Our results highlight the potential for non-linear responses to ecosystem change, with species-specific consumer and ecosystem responses that depend on the magnitude of changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

We acknowledge that Hydrobiologia can request the original data for review purposes.

References

  • Abraham, K. F., R. L. Jefferies & R. T. Alisauskas, 2005. The dynamics of landscape change and snow geese in mid-continent North America. Global Change Biology 11: 841–855.

    Google Scholar 

  • Amburgey, S., W. C. Funk, M. Murphy & E. Muths, 2012. Effects of hydroperiod duration on survival, developmental rate, and size at metamorphosis in Boreal Chorus Frog tadpoles (Pseudacris maculata). Herpetologica 68: 456–467.

    Google Scholar 

  • Atwood, T. B., E. Hammill, P. Kratina, H. S. Greig, J. B. Shurin & J. S. Richardson, 2015. Warming alters food web-driven changes in the CO2 flux of experimental pond ecosystems. Biology Letters 11: 20150785.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Avis, C. A., A. J. Weaver & K. J. Meissner, 2011. Reduction in areal extent of high-latitude wetlands in response to permafrost thaw. Nature Geoscience 4: 444–448.

    CAS  Google Scholar 

  • Berven, K. A., 1990. Factors affecting population fluctuations in larval and adult stages of the Wood Frog (Rana sylvatica). Ecology 71: 1599–1608.

    Google Scholar 

  • Berven, K. A. & D. E. Gill, 1983. Interpreting geographic variation in life-history traits. American Zoologist 23: 85–97.

    Google Scholar 

  • Bishir, S. C., B. R. Hossack, L. A. Fishback & J. M. Davenport, 2018. Post-breeding movement and habitat use by wood frogs along an Arctic-Subarctic ecotone. Arctic, Antarctic, and Alpine Research Taylor & Francis 50: e1487657.

    Google Scholar 

  • Blois, J. L., P. L. Zarnetske, M. C. Fitzpatrick & S. Finnegan, 2013. Climate change and the past, present, and future of biotic interactions. Science 341: 499–504.

    CAS  PubMed  Google Scholar 

  • Chelgren, N. D., D. K. Rosenberg, S. S. Heppell & A. I. Gitelman, 2006. Carryover aquatic effects on survival of metamorphic frogs during pond emigration. Ecological Applications 16: 250–261.

    PubMed  Google Scholar 

  • Cohen, J., J. A. Screen, J. C. Furtado, M. Barlow, D. Whittleston, D. Coumou, J. Francis, K. Dethloff, D. Entekhabi, J. Overland & J. Jones, 2014. Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience 7: 627–637.

    CAS  Google Scholar 

  • Côté, G., R. Pienitz, G. Velle & X. Wang, 2010. Impact of geese on the limnology of lakes and ponds from Bylot Island (Nunavut, Canada). International Review of Hydrobiology 95: 105–129.

    Google Scholar 

  • Cottingham, K. L., B. L. Brown & J. T. Lennon, 2005. Knowing when to draw the line: designing more informative ecological experiments. Frontiers in Ecology and the Environment 3: 145–152.

    Google Scholar 

  • Davenport, J. M. & B. R. Hossack, 2016. Reevaluating geographic variation in life-history traits of a widespread Nearctic amphibian. Journal of Zoology 299: 304–310.

    Google Scholar 

  • Davenport, J. M., B. R. Hossack & L. A. Fishback, 2017. Additive impacts of experimental climate change increase risk to an ectotherm at the Arctic’s edge. Global Change Biology 23: 2262–2271.

    PubMed  Google Scholar 

  • Davenport, J. M., P. A. Seiwert, L. A. Fishback & W. B. Cash, 2013. The effects of two fish predators on Wood Frog (Lithobates sylvaticus) tadpoles in a subarctic wetland: Hudson Bay Lowlands, Canada. Canadian Journal of Zoology 91: 866–871.

    Google Scholar 

  • Davenport, J. M., P. A. Seiwert, L. Fishback & W. Ben Cash, 2016. The interactive effects of fish predation and conspecific density on survival and growth of tadpoles of Rana sylvatica in a Subarctic wetland. Copeia 104: 639–644.

    Google Scholar 

  • Denver, R. J., 1997. Environmental stress as a developmental cue: corticotropin-releasing hormone is a proximate mediator of adaptive phenotypic plasticity in amphibian metamorphosis. Hormones and Behavior 31: 169–179.

    CAS  PubMed  Google Scholar 

  • Dessborn, L., R. Hessel & J. Elmberg, 2016. Geese as vectors of nitrogen and phosphorus to freshwater systems. Inland Waters 6: 111–122.

    CAS  Google Scholar 

  • Dodd, C. K. J., 2013. Frogs of the United States and Canada. Johns Hopkins University Press, Baltimore, MD.

    Google Scholar 

  • Duarte, H., M. Tejedo, M. Katzenberger, F. Marangoni, D. Baldo, J. F. Beltrán, D. A. Martí, A. Richter-Boix & A. Gonzalez-Voyer, 2011. Can amphibians take the heat? Vulnerability to climate warming in subtropical and temperate larval amphibian communities. Global Change Biology 18: 412–421.

    Google Scholar 

  • Duguay, C. R., T. J. Pultz, P. M. Lafleur & D. Drai, 2002. RADARSAT backscatter characteristics of ice growing on shallow sub-Arctic lakes, Churchill, Manitoba, Canada. Hydrological Processes 16: 1631–1644.

    Google Scholar 

  • Dyke, L. D. & W. E. Sladen, 2010. Permafrost and peatland evolution in the northern Hudson Bay lowland, Manitoba. Arctic 63: 429–441.

    Google Scholar 

  • Earl, J. E. & R. D. Semlitsch, 2013a. Carryover effects in amphibians: are characteristics of the larval habitat needed to predict juvenile survival? Ecological Applications 23: 1429–1442.

    PubMed  Google Scholar 

  • Earl, J. E. & R. D. Semlitsch, 2013b. Spatial subsidies, trophic state, and community structure: examining the effects of leaf litter input on ponds. Ecosystems 16: 639–651.

    Google Scholar 

  • Eichel, K. A., M. L. Macrae, R. I. Hall, L. Fishback & B. B. Wolfe, 2014. Nutrient uptake and short-term responses of phytoplankton and benthic algal communities from a Subarctic pond to experimental nutrient enrichment in microcosms. Arctic, Antarctic, and Alpine Research 46: 191–205.

    Google Scholar 

  • Gibbons, J. W., C. T. Winne, D. E. Scott, J. D. Willson, X. Glaudas, K. M. Andrews, B. D. Todd, L. A. Fedewa, L. Wilkinson, R. N. Tsaliagos, S. J. Harper, J. L. Greene, T. D. Tuberville, B. S. Metts, M. E. Dorcas, J. P. Nestor, C. A. Young, T. Akre, R. N. Reed, K. A. Buhlmann, J. Norman, D. A. Croshaw, C. Hagen & B. B. Rothermel, 2006. Remarkable amphibian biomass and abundance in an isolated wetland: implications for wetland conservation. Conservation Biology 20: 1457–1465.

    PubMed  Google Scholar 

  • Gilman, S. E., M. C. Urban, J. Tewksbury, G. W. Gilchrist & R. D. Holt, 2010. A framework for community interactions under climate change. Trends in Ecology and Evolution 25: 325–331.

    PubMed  Google Scholar 

  • Gosner, K. L., 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16: 183–190.

    Google Scholar 

  • Greig, H. S., P. Kratina, P. L. Thompson, W. J. Palen, J. S. Richardson & J. B. Shurin, 2012. Warming, eutrophication, and predator loss amplify subsidies between aquatic and terrestrial ecosystems. Global Change Biology 18: 504–514.

    Google Scholar 

  • Gudmundsdottir, R., J. S. Olafsson, S. Palsson, G. M. Gislason & B. Moss, 2011. How will increased temperature and nutrient enrichment affect primary producers in sub-Arctic streams? Freshwater Biology 56: 2045–2058.

    Google Scholar 

  • Handa, A. I. T., R. Harmsen & R. L. Jefferies, 2002. Patterns of vegetation change and the recovery potential of degraded areas in a coastal marsh system of the Hudson Bay Lowlands. Journal of Ecology 90: 86–99.

    Google Scholar 

  • Harkey, G. A. & R. D. Semlitsch, 1988. Effects of temperature on growth, development, and color polymorphism in the Ornate Chorus Frog Pseudacris ornata. Copeia 1988: 1001–1007.

    Google Scholar 

  • Hobbie, J. E., B. J. Peterson, N. Bettez, L. Deegan, W. J. O’Brien, G. W. Kling, G. W. Kipphut, W. B. Bowden & A. E. Hershey, 1999. Impact of global change on the biogeochemistry and ecology of an Arctic freshwater system. Polar Research 18: 207–214.

    Google Scholar 

  • IPCC, 2014. Climate Change 2014: Synthesis Report. Geneva.

  • Iwai, N., T. Kagaya & R. A. Alford, 2012. Feeding by omnivores increases food available to consumers. Oikos 121: 313–320.

    CAS  Google Scholar 

  • Jefferies, R. L., 2004. Agricultural food subsidies, migratory connectivity and large-scale disturbance in Arctic coastal systems: a case study. Integrative and Comparative Biology 44: 130–139.

    CAS  PubMed  Google Scholar 

  • Jefferies, R. L., A. P. Jano & K. F. Abraham, 2006. A biotic agent promotes large-scale catastrophic change in the coastal marshes of Hudson Bay. Journal of Ecology 94: 234–242.

    Google Scholar 

  • Jefferies, R. L., R. F. Rockwell, S. Applied, V. Science, N. May, L. Robert & F. Robert, 2002. Foraging geese, vegetation loss and soil degradation in an Arctic salt marsh. Applied Vegetation Science 5: 7–16.

    Google Scholar 

  • Kingsolver, J. G., H. Arthur Woods, L. B. Buckley, K. A. Potter, H. J. MacLean & J. K. Higgins, 2011. Complex life cycles and the responses of insects to climate change. Integrative and Comparative Biology 51: 719–732.

    PubMed  Google Scholar 

  • Kratina, P., H. S. Greig, P. L. Thompson, T. S. A. Carvalho-Pereira & J. B. Shurin, 2012. Warming modifies trophic cascades and eutrophication in experimental freshwater communities. Ecology 93: 1421–1430.

    PubMed  Google Scholar 

  • Leibold, M. A. & H. M. Wilbur, 1992. Interactions between food-web structure and nutrients on pond organisms. Nature 360: 341–343.

    Google Scholar 

  • Loman, J., 2001. Effects of tadpole grazing on periphytic algae in ponds. Wetlands Ecology and Management 9: 135–139.

    Google Scholar 

  • Lyu, Z., H. Genet, Y. He, Q. Zhuang, A. D. McGuire, A. Bennett, A. Breen, J. Clein, E. S. Euskirchen, K. Johnson, T. Kurkowski, N. J. Pastick, T. S. Rupp, B. K. Wylie & Z. Zhu, 2018. The role of environmental driving factors in historical and projected carbon dynamics of wetland ecosystems in Alaska. Ecological Applications 28: 1377–1395.

    PubMed  Google Scholar 

  • MacDonald, L. A., N. Farquharson, R. I. Hall, B. B. Wolfe, M. L. Macrae & J. N. Sweetman, 2014. Avian-driven modification of seasonal carbon cycling at a tundra pond in the Hudson Bay Lowlands (Northern Manitoba, Canada). Arctic, Antarctic, and Alpine Research 46: 206–217.

    Google Scholar 

  • MacDonald, L. A., N. Farquharson, G. Merritt, S. Fooks, A. S. Medeiros, R. I. Hall, B. B. Wolfe, M. L. Macrae & J. N. Sweetman, 2015. Limnological regime shifts caused by climate warming and Lesser Snow Goose population expansion in the western Hudson Bay Lowlands (Manitoba, Canada). Ecology and Evolution 5: 921–939.

    PubMed  PubMed Central  Google Scholar 

  • Macrae, M. L., C. R. Duguay, J. A. Parrott, R. M. Petrone & L. C. Brown, 2014. Observed and projected climate change in the Churchill region of the Hudson Bay Lowlands and implications for pond sustainability. Arctic, Antarctic, and Alpine Research 46: 272–285.

    Google Scholar 

  • Mannan, R. N., 2008. An assessment of survey methdology, calling activity, and habitat associations of wood frogs (Rana sylvatica) and boreal chorus frogs (Pseudacris maculata) in a tundra biome. Texas Tech University.

  • Manny, B. A., W. C. Johnson & R. G. Wetzel, 1994. Nutrient additions by waterfowl to lakes and reservoirs: predicting their effects on productivit and water quality. Hydrobiologia 280: 121–132.

    Google Scholar 

  • McCullagh, P. & J. A. Nelder, 1997. Generalized linear models. 2nd Edition. Chapman and Hall, London.

    Google Scholar 

  • Morin, P. J. & E. A. Johnson, 1988. Experimental studies of asymmetric competition among anurans. Oikos 53: 398–407.

    Google Scholar 

  • Moss, B., D. Mckee, D. Atkinson, S. E. Collings, J. W. Eaton, A. B. Gill, I. Harvey, K. Hatton, T. Heyes & D. Wilson, 2003. How important is climate? Effects of warming, nutrient addition and fish on phytoplankton in shallow lake microcosms. Journal of Applied Ecology 40: 782–792.

    Google Scholar 

  • Murtaugh, P. A., 2014. In defense of P values. Ecology 95: 611–617.

    PubMed  Google Scholar 

  • Newman, R. A., 1992. Adaptive plasticity in amphibian metamorphosis. BioScience 42: 671–678.

    Google Scholar 

  • O’Regan, S. M., W. J. Palen & S. C. Anderson, 2014. Climate warming mediates negative impacts of rapid pond drying for three amphibian species. Ecology 95: 845–855.

    PubMed  Google Scholar 

  • Petrone, R. M., W. R. Rouse & P. Marsh, 2000. Comparative surface energy budgets in Western and Central Subarctic regions of Canada. International Journal of Climatology 1148: 1131–1148.

    Google Scholar 

  • Pinheiro, J., D. Bates, S. Debroy, D. Sarkar, & R. Team, 2015. nlme: Linear and Nonlinear Mixed Effects Models.

  • R Core Team, 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna https://www.r-project.org.

  • Redmer, M. & S. E. Trauth, 2005. Rana sylvatica Leconte, 1825 Amphibian Declines: The Conservation Status of United States Species. University of California Press, Berkeley, CA: 590–593.

    Google Scholar 

  • Regester, K. J., K. R. Lips & M. R. Whiles, 2006. Energy flow and subsidies associated with the complex life cycle of ambystomatid salamanders in ponds and adjacent forest in southern Illinois. Oecologia 147: 303–314.

    PubMed  Google Scholar 

  • Reiter, M. E., C. W. Boal & D. E. Andersen, 2008. Anurans in a Subarctic tundra landscape near Cape Churchill, Manitoba. Canadian Field-Naturalist 122: 129–137.

    Google Scholar 

  • Reyes, F. R. & V. L. Lougheed, 2015. Rapid nutrient release from permafrost thaw in Arctic aquatic ecosystems. Arctic, Antarctic, and Alpine Research 47: 35–48.

    Google Scholar 

  • Richter-Boix, A., M. Tejedo & E. L. Rezende, 2011. Evolution and plasticity of anuran larval development in response to desiccation: a comparative analysis. Ecology and Evolution 1: 15–25.

    PubMed  PubMed Central  Google Scholar 

  • Rouse, W. R., M. S. V. Douglas, R. E. Hecky, A. E. Hershey, G. W. Kling, L. Lesack, P. Marsh, M. McDonald, B. Nicholson, N. T. Roulet & J. P. Smol, 2002. Effects of climate change on the freshwaters of Arctic and Subarctic North America. Hydrological Processes 11: 873–902.

    Google Scholar 

  • Rühland, K., A. Priesnitz & J. P. Smol, 2003. Paleolimnological evidence from diatoms for recent environmental changes in 50 lakes across Canadian Arctic treeline. Arctic, Antarctic, and Alpine Research 35: 110–123.

    Google Scholar 

  • Seale, D. B., 1980. Influence of amphibian larvae on primary production, nutrient flux, and competition in a pond ecosystem. Ecology 61: 1531–1550.

    Google Scholar 

  • Semlitsch, R. D., D. E. Scott & J. H. K. Pechmann, 1988. Time and size at metamorphosis related to adult fitness in Ambystoma talpoideum. Ecology 69: 184–192.

    Google Scholar 

  • Shurin, J. B., J. L. Clasen, H. S. Greig, P. Kratina & P. L. Thompson, 2012. Warming shifts top-down and bottom-up control of pond food web structure and function. Philosophical Transactions of the Royal Society B: Biological Sciences 367: 3008–3017.

    Google Scholar 

  • Sitch, S., A. D. Mcguire, J. Kimball, N. Gedney, J. Gamon, A. Wolf, Q. Zhuang, J. Clein & K. C. Mcdonald, 2007. Assessing the Carbon balance of circumpolar Arctic tundra using remote sensing and process modeling. Ecological Applications 17: 213–234.

    PubMed  Google Scholar 

  • Skelly, D. K., L. K. Freidenburg & J. M. Kiesecker, 2002. Forest canopy and the performance of larval amphibians. Ecology 83: 983–992.

    Google Scholar 

  • Smith, D. C., 1987. Adult recruitment in chorus frogs: effects of size and date at metamorphosis. Ecology 68: 344–350.

    Google Scholar 

  • Smith, L. C., Y. Sheng, G. M. MacDonald & L. D. Hinzman, 2005. Disappearing Arctic Lakes. Science 308: 1429.

    CAS  PubMed  Google Scholar 

  • Smith, V. H., 2003. Eutrophication of freshwater and coastal marine ecosystems a global problem. Environmental Science and Pollution 10: 126–139.

    CAS  Google Scholar 

  • Smith, V. H., G. D. Tilman & J. C. Nekola, 1999. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution 100: 179–196.

    CAS  PubMed  Google Scholar 

  • Somero, G. N., 2010. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine “winners” and “losers”. Journal of Experimental Biology 213: 912–920.

    CAS  PubMed  Google Scholar 

  • Srivastava, D. S. & R. L. Jefferies, 1996. A positive feedback: herbivory, plant growth, salinity, and the desertification of an Arctic salt-marsh. Journal of Ecology 84: 31–42.

    Google Scholar 

  • Stanley, D. W. & R. J. Daley, 1976. Environmental control of primary productivity in Alaskan yundra ponds. Ecology 57: 1025–1033.

    Google Scholar 

  • Strecker, A. L., T. P. Cobb & R. D. Vinebrooke, 2004. Effects of experimental greenhouse warming on phytoplankton and zooplankton communities in fishless alpine ponds. Limnology and Oceanography 49: 1182–1190.

    CAS  Google Scholar 

  • Symons, C. C., S. E. Arnott & J. N. Sweetman, 2012. Nutrient limitation of phytoplankton communities in Subarctic lakes and ponds in Wapusk National Park, Canada. Polar Biology 35: 481–489.

    Google Scholar 

  • Symons, C. C., M. T. Pedruski, S. E. Arnott & J. N. Sweetman, 2014. Spatial, environmental, and biotic determinants of zooplankton community composition in Subarctic lakes and ponds in Wapusk National Park, Canada. Arctic, Antarctic, and Alpine Research 46: 159–190.

    Google Scholar 

  • Van Geest, G. J., D. O. Hessen, P. Spierenburg, G. A. P. Dahl-Hansen, G. Christensen, P. J. Faerovig, M. Brehm, M. J. J. E. Loonen & E. Van Donk, 2007. Goose-mediated nutrient enrichment and planktonic grazer control in arctic freshwater ponds. Oecologia 153: 653–662.

    PubMed  Google Scholar 

  • Werner, E. E. & S. D. Peacor, 2006. Lethal and nonlethal predator effects on an herbivore guild mediated by system productivity. Ecology 87: 347–361.

    PubMed  Google Scholar 

  • White, D., L. Hinzman, L. Alessa, J. Cassano, M. Chambers, K. Falkner, J. Francis, W. J. Gutowski Jr., M. Holland, R. M. Holmes, H. Huntington, D. Kane, A. Kliskey, C. Lee, J. McClelland, B. Peterson, T. S. Rupp, F. Straneo, M. Steele, R. Woodgate, D. Yang, K. Yoshikawa & T. Zhang, 2007. The arctic freshwater system: Changes and impacts. Journal of Geophysical Research: Biogeosciences 112: G04S54.

    Google Scholar 

  • White, J., R. I. Hall, B. B. Wolfe, E. M. Light, M. L. Macrae & L. Fishback, 2014. Hydrological connectivity and basin morphometry influence seasonal water-chemistry variations in tundra ponds of the northwestern Hudson Bay Lowlands. Arctic, Antarctic, and Alpine Research 46: 218–235.

    Google Scholar 

  • Wilbur, H. M., 1997. Experimental ecology of food webs: complex systems in temporary ponds. Ecology 78: 2279–2302.

    Google Scholar 

  • Yvon-Durocher, G., J. I. Jones, M. Trimmer, G. Woodward & J. M. Montoya, 2010. Warming alters the metabolic balance of ecosystems. Philosophical Transactions of the Royal Society B 365: 2117–2126.

    Google Scholar 

  • Zarnetske, P. L., D. K. Skelly & M. C. Urban, 2012. Biotic multipliers of climate change. Science 336: 1516–1518.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Bishir, K. Mills, K. Thomson, M. Webb, for field assistance and data entry. We are also grateful to all Earthwatch participants who helped maintain experiments and collect data. T. Anderson, J. Burkhart, K. Stemp, and K. O’Donnell provided helpful comments on the manuscript. J.M. Davenport would like to thank J.K. Davenport, L.O. Davenport, and C.E. Davenport for support during the research. Funding was provided from Northern Research Funds from CNSC. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. This is contribution number XXX of the U.S. Geological Survey Amphibian Research and Monitoring Initiative (ARMI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon M. Davenport.

Ethics declarations

Conflicts of interest

All authors have no conflicts of interest to declare.

Additional information

Handling editor: Lee B. Kats

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This draft manuscript is distributed solely for purposes of scientific peer review. Its content is deliberative and predecisional so it must not be disclosed or released by reviewers. Because the manuscript has not yet been approved for publication by the U.S. Geological Survey (USGS), it does not represent any official USGS finding or policy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 72 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davenport, J.M., Fishback, L. & Hossack, B.R. Effects of experimental warming and nutrient enrichment on wetland communities at the Arctic’s edge. Hydrobiologia 847, 3677–3690 (2020). https://doi.org/10.1007/s10750-020-04392-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04392-x

Keywords

Navigation