Skip to main content
Log in

Mass transfer coefficient for PZ + CO2 + H2O system in a packed column

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The gas-phase mass transfer coefficient is one of the significant parameter for the determination of mass transfer in absorption columns. A novel correlation was obtained for the calculation of the gas phase mass transfer coefficient in the current research study based on the theoretical investigation and experimental data. Buckingham pi-theorem was utilized to develop an overall dimensionless correlation. The correlation was derived based on the experimental data conducted at the operating conditions’ range of temperature 40–100 °C, CO2 partial pressure of 18-66 kPa, and piperazine (PZ) concentration of 2-8 M. The correlation was validated using the experimental data with an acceptable error of 7.47%. The results showed that the gas-phase mass transfer coefficient was increased by enhancing the amount of holdup and Schmidt number (Sc) at different temperatures and PZ concentrations. Furthermore, by comparing the Sc number with holdup, it was observed that a higher temperature resulted in a higher hold-up amount in the gas-phase of the absorption column.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

a e :

effective specific interfacial area, 1/m

a p :

packing specific surface area, m

a t :

Total area packing, m

C G :

gas concentration, kmol.m−3

D G :

gas diffusivity,m2/s

d c :

column internal diameter, m

d eq :

equivalent diameter of flow channel, m

d h :

hydraulic diameter of packing, m

d pe :

diameter of a packing element, m

f :

fraction of cells occupied

f c :

fraction of cells occupied at percolation threshold

G :

molar gas flow, mol.s−1

g:

gravitational constant, m.s−2

HETP:

height equivalent to a theoretical plate, m

HTU:

height of mass-transfer unit, m

h L :

liquid holdup, m3.m−3

K G :

gas phase mass-transfer coefficient, m.s−1

K L :

liquid-side mass-transfer coefficient, m.s−1

K V :

density-corrected superficial vapor velocity, m.s−1

m, n :

packing-related constants

PZ:

piperazine

R :

gas constant, J.K−1.mol−1

S :

corrugation side length, m

T :

Temperature, K

u G :

superficial gas velocity, m.s−1

u L :

superficial liquid velocity, m.s−1

Z t :

total height of packed bed, m

Sh :

Sherwood number

Sc :

Schmidt number

ε :

void fraction of packing, m3.m−3

λ :

stripping factor

Γ:

liquid flow based on perimeter, kg.m−1.s−1

ρ :

density, kg/m3

μ G :

gas viscosity, kg.m−1.s−1

References

  1. Fashi F, Ghaemi A, Behroozi AH (2020) Piperazine impregnation on zeolite 13X as a novel adsorbent for CO2 capture: experimental and modeling. Chem Eng Com:1–17. https://doi.org/10.1080/00986445.2020.1746657

  2. Behroozi AH, Akbarzad N, Ghaemi A (2020) CO2 reactive absorption into an aqueous blended MDEA and TMS solution: experimental and modeling. Int J of Env Res 14(3):347–363. https://doi.org/10.1007/s41742-020-00261-6

    Article  Google Scholar 

  3. Naeem S, Ghaemi A, Shahhosseini S (2016) Experimental investigation of CO2 capture using sodium hydroxide particles in a fluidized bed. Korean J Chem Eng 33:1278–1285. https://doi.org/10.1007/s11814-015-0237-1

    Article  Google Scholar 

  4. Heymes F, Demoustier PM, Charbit F, Fanlo JL, Moulin P (2006) Hydrodynamics and mass transfer in a packed column: case of toluene absorption with a viscous absorbent. Chem Eng Sci 61:5094–5106. https://doi.org/10.1016/j.ces.2006.03.037

    Article  Google Scholar 

  5. Al Mesfer MK, Danish M, Fahmy YM, Rashid MM (2018) Post-combustion CO2 capture with activated carbons using fixed bed adsorption. Heat Mass Transf 54:2715–2724. https://doi.org/10.1007/s00231-018-2319-1

    Article  Google Scholar 

  6. Salimi J, Haghshenasfard M, Etemad SG (2015) CO2 absorption in nanofluids in a randomly packed column equipped with magnetic field. Heat Mass Transf 51:621–629. https://doi.org/10.1007/s00231-014-1439-5

    Article  Google Scholar 

  7. Stichlmair J, Bravo J, Fair J (1989) General model for prediction of pressure drop and capacity of countercurrent gas/liquid packed columns. Gas Sep Purif 3:19–28. https://doi.org/10.1016/0950-4214(89)80016-7

    Article  Google Scholar 

  8. Fair JR, Seibert AF, Behrens M, Saraber P, Olujic Z (2000) Structured packing performance experimental evaluation of two predictive models. Ind Eng Chem Res 39:1788–1796. https://doi.org/10.1021/ie990910t

    Article  Google Scholar 

  9. Iliuta I, Larachi F (2001) Mechanistic model for structured-packing-containing columns: irrigated pressure drop, liquid holdup, and packing fractional wetted area. Ind Eng Chem Res 40:5140–5146. https://doi.org/10.1021/ie001032y

    Article  Google Scholar 

  10. Niknafs H, Ghaemi A, Shahhosseini S (2015) Dynamic heat and mass transfer modeling and control in carbon dioxide reactive absorption process. Heat Mass Transf 51:1131–1140. https://doi.org/10.1007/s00231-014-1484-0

    Article  Google Scholar 

  11. Iliuta I and Larachi F (2005) Modelling the hydrodynamics of gas-liquid packed beds via slit models: A review Int J Chem Reactor Eng 3 https://doi.org/10.2202/1542-6580.1218

  12. Morris G, Jackson J (1953) Absorption towers. Butterworths Scientific Publications, London

    Google Scholar 

  13. Sherwood T, Shipley G, Holloway F (1938) Flooding velocities in packed columns. Ind Eng Chem 30:765–769. https://doi.org/10.1021/ie50343a008

    Article  Google Scholar 

  14. Sherwood T, Holloway F (1940) Performance of packed towers—experimental studies of absorption and desorption. Trans Am Inst Chem Eng 36:21

    Google Scholar 

  15. Sherwood T, Holloway F (1940) Performance of packed towers-liquid film data for several packings. Trans Am Inst Chem Eng 36:39–70

    Google Scholar 

  16. Shulman H, Ullrich C, Proulx A, Zimmerman J (1955) Performance of packed columns. II. Wetted and effective-interfacial areas, gas-and liquid-phase mass transfer rates. AIChE J 1:253–258. https://doi.org/10.1002/aic.690010220

    Article  Google Scholar 

  17. Shulman H, Mellish W (1967) Performance of packed columns: part VIII. Liquid flow patterns and velocities in packed beds. AIChE J 13:1137–1140. https://doi.org/10.1002/aic.690130620

    Article  Google Scholar 

  18. Shulman H, Mellish W, Lyman W (1971) Performance of packed columns: IX. Simulation of a packed column. AIChE J 17:631–640. https://doi.org/10.1002/aic.690170328

    Article  Google Scholar 

  19. Onda K, Sada E, Murase Y (1959) Liquid-side mass transfer coefficients in packed towers. AIChE J 5:235–239. https://doi.org/10.1002/aic.690050220

    Article  Google Scholar 

  20. Mamaliga I, Sidor D, Condurat C, Tudose EI (2014) Hydrodynamics and mass transfer coefficients for a modified Raschig ring packed column. Heat Mass Transf 50:1385–1392. https://doi.org/10.1007/s00231-014-1324-2

    Article  Google Scholar 

  21. Onda K, Takeuchi H, Okumoto Y (1968) Mass transfer coefficients between gas and liquid phases in packed columns. J Chem Eng Jpn 1:56–62. https://doi.org/10.1252/jcej.1.56

    Article  Google Scholar 

  22. Razi N, Svendsen HF, Bolland O (2013) The impact of design correlations on rate-based modeling of a large scale CO2 capture with MEA. Energy Procedia 37:1977–1986. https://doi.org/10.1016/j.egypro.2013.06.078

    Article  Google Scholar 

  23. Billet R, Schultes M (1993) Predicting mass transfer in packed columns. Chem Eng Technol 16:1–9. https://doi.org/10.1002/ceat.270160102

    Article  Google Scholar 

  24. Higbie R (1935) The rate of absorption of a pure gas into a still liquid during short periods of exposure. Transaction AIChE 31:365–389

    Google Scholar 

  25. Shulman H, DeGouff J (1952) Mass transfer coefficients and interfacial areas for 1-inch raschig rings. Ind Eng Chem 44:1915–1922. https://doi.org/10.1021/ie50512a048

    Article  Google Scholar 

  26. Onda K, SADA E, TAKEUCHI H (1968) Gas absorption with chemical reaction in packed columns. J Chem Eng Jpn 1:62–66. https://doi.org/10.1252/jcej.1.62

    Article  Google Scholar 

  27. Van Krevelen D, Hoftijzer P (1947) Studies of gas absorption. I. Liquid film resistance to gas absorption in scrubbers. Rec Trav Chim Pays Bas 66:49–65. https://doi.org/10.1002/recl.19470660106

    Article  Google Scholar 

  28. Van Krevelen D, Hoftijzer P (1947) Studies of gas absorption: II. Application of the liquid film resistance relationship to the absorption of carbon dioxide by solutions of diethanolamine. Rec Trav Chim Pays Bas 66:67–70. https://doi.org/10.1002/recl.19470660202

    Article  Google Scholar 

  29. Vankrevelen D, Hoftijzer P (1948) Kinetics of simultaneous absorption and chemical reaction. Chem Eng Prog 44:529–536

    Google Scholar 

  30. Bravo JL, Fair JR (1982) Generalized correlation for mass transfer in packed distillation columns. Ind Eng Chem Process Des Dev 21:162–170. https://doi.org/10.1021/i200016a028

    Article  Google Scholar 

  31. Bravo JL (1985) Mass transfer in gauze packings. Hydrocarb Process 64:91–95

    Google Scholar 

  32. Shi MG (1985) Effective interfacial area in packed columns. Ger Chem Eng 8:87–96

    Google Scholar 

  33. Mersmann A, Deixler A (1986) Packed columns. Ger Chem Eng 9:265

    Google Scholar 

  34. Nawrocki P, Xu Z, Chuang K (1991) Mass transfer in structured corrugated packing. Can J Chem Eng 69:1336–1343. https://doi.org/10.1002/cjce.5450690614

    Article  Google Scholar 

  35. Hanley B, Dunbobbin B, Bennett D (1994) A unified model for countercurrent vapor/liquid packed columns. 2. Equations for the mass-transfer coefficients, mass-transfer area, the HETP, and the dynamic liquid holdup. Ind Eng Chem Res 33:1222–1230. https://doi.org/10.1021/ie00029a018

    Article  Google Scholar 

  36. Rocha JA, Bravo JL, Fair JR (1996) Distillation columns containing structured packings: a comprehensive model for their performance. 2. Mass-transfer model. Ind Eng Chem Res 35:1660–1667. https://doi.org/10.1021/ie940406i

    Article  Google Scholar 

  37. Brunazzi E, Paglianti A (1997) Liquid-film mass-transfer coefficient in a column equipped with structured packings. Ind Eng Chem Res 36:3792–3799. https://doi.org/10.1021/ie970045h

    Article  Google Scholar 

  38. Hanley B, Chen CC (2012) New mass-transfer correlations for packed towers. AIChE J 58:132–152. https://doi.org/10.1002/aic.12574

    Article  Google Scholar 

  39. Suess P, Spiegel L (1992) Hold-up of Mellapak structured packings. Chem Eng Process Process Intensif 31:119–124. https://doi.org/10.1016/0255-2701(92)85005-M

    Article  Google Scholar 

  40. Rocha JA, Bravo JL, Fair JR (1993) Distillation columns containing structured packings: a comprehensive model for their performance. 1. Hydraulic models. Ind Eng Chem Res 32:641–651. https://doi.org/10.1021/ie00016a010

    Article  Google Scholar 

  41. Sønderby TL, Carlsen KB, Fosbøl PL, Kiørboe LG, von Solms N (2013) A new pilot absorber for CO2 capture from flue gases: measuring and modelling capture with MEA solution. Int J Greenhouse Gas Control 12:181–192. https://doi.org/10.1016/j.ijggc.2012.10.010

    Article  Google Scholar 

  42. Gualito J, Cerino F, Cardenas J, Rocha J (1997) Design method for distillation columns filled with metallic, ceramic, or plastic structured packings. Ind Eng Chem Res 36:1747–1757. https://doi.org/10.1021/ie960625z

    Article  Google Scholar 

  43. Billet R, Schultes M (1999) Prediction of mass transfer columns with dumped and arranged packings: updated summary of the calculation method of Billet and Schultes. Chem Eng Res Des 77:498–504. https://doi.org/10.1205/026387699526520

    Article  Google Scholar 

  44. Xu Z, Afacan A, Chuang K (2000) Predicting mass transfer in packed columns containing structured packings. Chem Eng Res Des 78:91–98. https://doi.org/10.1205/026387600526924

    Article  Google Scholar 

  45. Del Carlo L, Olujić Ž, Paglianti A (2006) Comprehensive mass transfer model for distillation columns equipped with structured packings. Ind Eng Chem Res 45:7967–7976. https://doi.org/10.1021/ie060503z

    Article  Google Scholar 

  46. Sherwood TK, Pigford RL, Wilke CR (1975) Mass transfer. McGraw-Hill, New York

    Google Scholar 

  47. Johnstone H, Pigford R (1942) Distillation in a wetted-wall column. Trans Am Inst Chem Eng 38:25–51

    Google Scholar 

  48. De Brito MH, Von Stockar U, Bangerter AM, Bomio P, Laso M (1994) Effective mass-transfer area in a pilot plant column equipped with structured packings and with ceramic rings. Ind Eng Chem Res 33:647–656. https://doi.org/10.1021/ie00027a023

    Article  Google Scholar 

  49. Olujic Z (1997) Development of a complete simulation model for predicting the hydraulic and separation performance of distillation columns equipped with structured packings. Chem Biochem Eng Q 11:31–46

    Google Scholar 

  50. Puxty G, Rowland R (2011) Modeling CO2 mass transfer in amine mixtures: PZ-AMP and PZ-MDEA. Environ Sci Technol 45:2398–2405. https://doi.org/10.1021/es1022784

    Article  Google Scholar 

  51. Ghaemi A, Behroozi AH, Mashhadimoslem H (2020) Mass transfer flux of CO2 into Methyldiethanolamine solution in a reactive-absorption process. Chem Eng & Tech. https://doi.org/10.1002/ceat.201900412

  52. Ghaemi A, Behroozi AH (2020) Comparison of hydroxide-based adsorbents of mg (OH)2 and Ca (OH)2 for CO2 capture: utilization of response surface methodology, kinetic, and isotherm modeling. Greenhouse Gases: Sci and Tech. https://doi.org/10.1002/ghg.2015

  53. Buckingham E (1914) On physically similar systems; illustrations of the use of dimensional equations. Phys Rev 4:345. https://doi.org/10.1103/PhysRev.4.345

    Article  Google Scholar 

  54. Han J, Eimer DA, Melaaen MC (2013) Liquid phase mass transfer coefficient of carbon dioxide absorption by water droplet. Energy Procedia 37:1728–1735. https://doi.org/10.1016/j.egypro.2013.06.048

    Article  Google Scholar 

  55. Li W, Zhao X, Liu B, Tang Z (2014) Mass transfer coefficients for CO2 absorption into aqueous ammonia using structured packing. Ind Eng Chem Res 53:6185–6196. https://doi.org/10.1021/ie403097h

    Article  Google Scholar 

  56. Hemmati A, Shirvani M, Torab-Mostaedi M, Ghaemi A (2015) Hold-up and flooding characteristics in a perforated rotating disc contactor (PRDC). RSC Adv 5:63025–63033. https://doi.org/10.1039/C5RA08938G

    Article  Google Scholar 

  57. Zhang L, Zhang N, Zhao F, Chen Y (2004) A genetic-algorithm-based experimental technique for determining heat transfer coefficient of exterior wall surface. Appl Therm Eng 24:339–349. https://doi.org/10.1016/j.applthermaleng.2003.07.005

    Article  Google Scholar 

  58. Hemmati A, Shirvani M, Torab-Mostaedi M, Ghaemi A (2016) Mass transfer coefficients in a perforated rotating disc contactor (PRDC). Chem Eng Process Process Intensif 100:19–25. https://doi.org/10.1016/j.cep.2015.11.011

    Article  Google Scholar 

  59. Bishnoi S, Rochelle GT (2000) Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility. Chem Eng Sci 55:5531–5543. https://doi.org/10.1016/S0009-2509(00)00182-2

    Article  Google Scholar 

  60. Seo DJ, Hong WH (2000) Effect of piperazine on the kinetics of carbon dioxide with aqueous solutions of 2-amino-2-methyl-1-propanol. Ind Eng Chem Res 39:2062–2067. https://doi.org/10.1021/ie990846f

    Article  Google Scholar 

  61. Sun W-C, Yong C-B, Li M-H (2005) Kinetics of the absorption of carbon dioxide into mixed aqueous solutions of 2-amino-2-methyl-l-propanol and piperazine. Chem Eng Sci 60:503–516. https://doi.org/10.1016/j.ces.2004.08.012

    Article  Google Scholar 

  62. Liu J, Wang S, Zhao B, Qi G, Chen C (2012) Study on mass transfer and kinetics of CO2 absorption into aqueous ammonia and piperazine blended solutions. Chem Eng Sci 75:298–308. https://doi.org/10.1016/j.ces.2012.03.047

    Article  Google Scholar 

  63. Conway W, Fernandes D, Beyad Y, Burns R, Lawrance G, Puxty G, Maeder M (2013) Reactions of CO2 with aqueous piperazine solutions: formation and decomposition of mono-and dicarbamic acids/carbamates of piperazine at 25.0° C. J Phys Chem A 117:806–813. https://doi.org/10.1021/jp310560b

    Article  Google Scholar 

  64. Xu G, Zhang C, Qin S, Wang Y (1992) Kinetics study on absorption of carbon dioxide into solutions of activated methyldiethanolamine. Ind Eng Chem Res 31:921–927. https://doi.org/10.1021/ie00003a038

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the Research Council of the Iran University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Hemmati.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 9 The experiment design by ANOVA in the present study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaemi, A., Hemmati, A. Mass transfer coefficient for PZ + CO2 + H2O system in a packed column. Heat Mass Transfer 57, 283–297 (2021). https://doi.org/10.1007/s00231-020-02955-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-020-02955-1

Keywords

Navigation