Skip to main content
Log in

Stability of Double-Diffusive Convection in a Porous Medium with Temperature-Dependent Viscosity: Brinkman–Forchheimer Model

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

In this article, the problem of double-diffusive convection in a porous layer when the viscosity depends on the temperature and using Brinkman–Forchheimer model has been introduced by using the linear and nonlinear energy theories. For linear theory, the critical Rayleigh numbers have been derived and then numerically calculated. However, for nonlinear theory, the critical threshold was derived in three different ways and the results were compared with the results of the linear analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Accessibility

This work has not supplementary data.

References

  1. Combarnous, M.A., Bories, S.A.: Hydrothermal convection in saturated porous media. Adv. Hydrosci. 10, 231–307 (1975)

    Article  Google Scholar 

  2. Cheng, P.: Heat transfer in geothermal systems. Adv. Heat Transf. 14, 1–105 (1978)

    Google Scholar 

  3. Nield, D.A.: The stability of convective flows in porous media. In: Kakaç, S. (ed.) Convective Heat and Mass Transfer in Porous Media, pp. 79–122. Kluwer Academic, Dordrecht (1991)

    Chapter  Google Scholar 

  4. Larson, R.E., Higdon, J.J.L.: Microscopic flow near the surface of two-dimensional porous media. Part I. Axial flow. J. Fluid Mech. 166, 449–472 (1986)

    Article  Google Scholar 

  5. Durlofskly, L., Brady, J.F.: Analysis of the Brinkman equation as a model for flow in porous media. Phys. Fluids 30, 3329–3341 (1987)

    Article  Google Scholar 

  6. Vafai, K., Kim, S.J.: Fluid mechanics of the interface region between a porous medium and a fluid layer—an exact solution. Int. J. Heat Fluid Flow 11, 254–256 (1990)

    Article  Google Scholar 

  7. Hsu, C.T., Cheng, P.: Thermal dispersion in a porous medium. Int. J. Heat Fluid Flow 33, 1587–1597 (1990)

    MATH  Google Scholar 

  8. Kladias, N., Prasad, V.: Experimental verification of Darcy–Brinkman–Forchheimer flow model for natural convection in porous media. J. Thermophys. Heat Transf. 5, 56–576 (1991)

    Article  Google Scholar 

  9. Chen, F., Chen, C.F.: Convection in superposed fluid and porous layers. J. Fluid Mech. 234, 97–119 (1992)

    Article  Google Scholar 

  10. Nield, D.A.: The boundary correction for the Rayleigh–Darcy problem: limitations of the Brinkman equation. J. Fluid Mech. 128, 37–46 (1983)

    Article  MathSciNet  Google Scholar 

  11. Nield, D.A.: The limitations of the Brinkman–Forchheimer equation in modeling flow in a saturated porous medium and at an interface. Int. J. Heat Fluid Flow 12, 269–272 (1991)

    Article  Google Scholar 

  12. Hirata, S.C., Goyeau, B., Gobin, D., Carr, M., Cotta, R.M.: Linear stability of natural convection in superposed fluid and porous layers: influence of the interfacial modelling. Int. J. Heat Mass Transf. 50, 1356–1367 (2007)

    Article  Google Scholar 

  13. Brinkman, H.C.: A calculation of the viscous forces exerted by a floating fluid on a dense swarm of particles. Flow Turbul. Combust. 1, 27–34 (1949)

    Article  Google Scholar 

  14. Vafai, K., Tien, C.L.: Boundary and inertial effects on flow and heat transfer in porous media. Int. J. Heat Mass Transf. 24, 195–203 (1981)

    Article  Google Scholar 

  15. Qin, Y., Kaloni, P.N.: A nonlinear stability problem of convection in a porous vertical slab. Phys. Fluids 5, 2067–2069 (1993)

    Article  MathSciNet  Google Scholar 

  16. McKay, G.: Nonlinear stability analyses of problems in patterned ground formation and penetrative convection. Ph.D. Thesis, Glasgow University (1992)

  17. Merker, G.P., Waas, P., Grigull, U.: Onset of convection in a horizontal water layer with maximum density effects. Int. J. Heat Mass Transf. 22, 505–515 (1979)

    Article  Google Scholar 

  18. Or, A.C.: The effects of temperature-dependent viscosity and the instabilities in the convection rolls of a layer of fluid-saturated porous medium. J. Fluid Mech. 206, 497–515 (1989)

    Article  MathSciNet  Google Scholar 

  19. Straughan, B.: Mathematical Aspects of Penetrative Convection. Longman, Harlow (1993)

    Google Scholar 

  20. Richardson, L.L.: Nonlinear stability analyses for variable viscosity and compressible convection problems. Ph.D. Thesis, Glasgow University (1993)

  21. Payne, L.E., Straughan, B.: Convergence and continuous dependence for the Brinkman–Forchheimer equations. Stud. Appl. Math. 102, 419–439 (1999)

    Article  MathSciNet  Google Scholar 

  22. Qin, Y., Guo, J., Kaloni, P.N.: Double diffusive penetrative convection in porous media. Int. J. Eng. Sci. 33, 303–312 (1995)

    Article  MathSciNet  Google Scholar 

  23. Qin, Y., Chadam, J.: Nonlinear convective stability in a porous medium with temperature-dependent viscosity and inertial drag. Stud. Appl. Math. 96, 273–288 (1996)

    Article  MathSciNet  Google Scholar 

  24. Forchheimer, P.: Wasserbewegung durch Boden. Z. Vereines Deutscher Ingnieure 50, 1781–1788 (1901)

    Google Scholar 

  25. Straughan, B.: The Energy Method, Stability, and Nonlinear Convection. Series in Applied Mathematical Sciences, vol. 91, 2nd edn. Springer, Berlin (2004)

    Book  Google Scholar 

  26. Straughan, B.: Explosive Instabilities in Mechanics. Springer, Berlin (1998)

    Book  Google Scholar 

  27. Payne, L.E., Straughan, B.: Unconditional nonlinear stability in temperature-dependent viscosity flow in a porous medium. Stud. Appl. Math. 105, 59–81 (2000)

    Article  MathSciNet  Google Scholar 

  28. Hameed, A.A., Harfash, A.J.: Unconditional nonlinear stability for double-diffusive convection in a porous medium with temperature-dependent viscosity and density. Heat Transf. Asian Res. 48, 2948–2973 (2019)

    Article  Google Scholar 

  29. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Dover, New York (1981)

    MATH  Google Scholar 

  30. Harfash, A.J.: Three dimensional simulation of radiation induced convection. Appl. Math. Comput. 227, 92–101 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Harfash, A.J.: Three dimensional simulations for convection induced by the selective absorption of radiation for the Brinkman model. Meccanica 51, 501–515 (2016)

    Article  MathSciNet  Google Scholar 

  32. Harfash, A.J., Alshara, A.K.: On the stationary and oscillatory modes of triply resonant penetrative convection. Int. J. Numer. Meth. Heat Fluid Flow 26, 1391–1415 (2016)

    Article  MathSciNet  Google Scholar 

  33. Harfash, A.J.: Resonant penetrative convection in porous media with an internal heat source/sink effect. Appl. Math. Comput. 281, 323–342 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Harfash, A.J.: Stability analysis for penetrative convection in a fluid layer with throughflow. Int. J. Mod. Phys. C 27(8), 1650101 (2016)

    Article  MathSciNet  Google Scholar 

  35. Harfash, A.J., Nashmi, F.K.: Triply resonant double diffusive convection in a fluid layer. Math. Model. Anal. 22, 809–826 (2017)

    Article  MathSciNet  Google Scholar 

  36. Harfash, A.J., Challoob, H.A.: Slip boundary conditions and through flow effects on double-diffusive convection in internally heated heterogeneous Brinkman porous media. Chin. J. Phys. 56, 10–22 (2018)

    Article  MathSciNet  Google Scholar 

  37. Harfash, A.J., Meften, G.A.: Couple stresses effect on linear instability and nonlinear stability of convection in a reacting fluid. Chaos Solitons Fract. 107, 18–25 (2018)

    Article  MathSciNet  Google Scholar 

  38. Harfash, A.J., Challoob, H.A.: Nonhomogeneous porosity and thermal diffusivity effects on stability and instability of double-diffusive convection in a porous medium layer: Brinkman model. Nonlinear Eng. Model. Appl. 8(1), 293–302 (2019)

    Article  Google Scholar 

  39. Harfash, A.J., Meften, G.A.: Couple stresses effect on instability and nonlinear stability in a double diffusive convection. Appl. Math. Comput. 341, 301–320 (2019)

    MathSciNet  MATH  Google Scholar 

  40. Challoob, H.A., Mathkhor, A.J., Harfash, A.J.: Slip boundary condition effect on double-diffusive convection in a porous medium: Brinkman model. Heat Transf. Asian Res. 49, 258–268 (2020)

    Article  Google Scholar 

  41. Joseph, D.D.: Uniqueness criteria for the conduction–diffusion solution of the Boussinesq equations. Arch. Ration. Mech. Anal. 35(3), 169–177 (1969)

    Article  MathSciNet  Google Scholar 

Download references

Funding

No funding has been received for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akil J. Harfash.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Communicated by Syakila Ahmad.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harfash, A.J., Hameed, A.A. Stability of Double-Diffusive Convection in a Porous Medium with Temperature-Dependent Viscosity: Brinkman–Forchheimer Model. Bull. Malays. Math. Sci. Soc. 44, 1275–1307 (2021). https://doi.org/10.1007/s40840-020-01013-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-020-01013-7

Keywords

Mathematics Subject Classification

Navigation