Skip to main content
Log in

Soluble and Cross-Linked Aggregated Forms of α-Galactosidase from Vigna mungo Immobilized on Magnetic Nanocomposites: Improved Stability and Reusability

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

α-Galactosidases hold immense potential due to their biotechnological applications in various industrial and functional food sectors. In the present study, soluble and covalently cross-linked aggregated forms of a low molecular weight, thermo-labile α-galactosidase from Vigna mungo (VM-αGal) seeds were immobilized onto chitosan-coated magnetic nanoparticles for improved stability and repeated usage by magnetic separation. Parameters like precipitants (type, amount, and ratio), glutaraldehyde concentration, and enzyme load were optimized for the preparation of chitosan-coated magnetic nanocomposites of cross-linked VM-αGal (VM-αGal-MC) and VM-αGal (VM-αGal-M) resulted in 100% immobilization efficiency. Size and morphology of VM-αGal-M were studied through dynamic light scattering (DLS) and scanning electron microscopy (SEM), while Fourier transform infrared spectroscopy (FTIR) was used to study the chemical composition of VM-αGal-MC and VM-αGal-M. VM-αGal-MC and VM-αGal-M were found more active in a broad range of pH (3–8) and displayed optimal temperatures up to 25 °C higher than VM-αGal. Addition of non-ionic detergents (except Tween-40) improved VM-αGal-MC activity by up to 44% but negatively affected VM-αGal-M activity. Both VM-αGal-MC (15% residual activity after 21 min at 85 °C, Ed 92.42 kcal/mol) and VM-αGal-M (69.0% residual activity after 10 min at 75 °C, Ed 39.87 kcal/mol) showed remarkable thermal stability and repeatedly hydrolyzed the substrate for 10 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dey, P. M., & Pridham, J. B. (1972). Biochemistry of a-galactosidase. Advances in Enzymology and Related Areas of Molecular Biology, 36, 91–130.

    CAS  PubMed  Google Scholar 

  2. Bhatia, S., Singh, A., Batra, N., & Singh, J. (2019). Microbial production and biotechnological applications of α-galactosidase. International Journal of Biological Macromolecules, 150, 1294–1313.

    Article  PubMed  CAS  Google Scholar 

  3. Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., & Henrissat, B. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Research, 37(suppl_1), D233–D238.

    Article  CAS  PubMed  Google Scholar 

  4. Wang, H., Ma, R., Shi, P., Xue, X., Luo, H., Huang, H., Bai, Y., Yang, P., & Yao, B. (2014). A new α-galactosidase from Thermoacidophilic Alicyclobacillus sp. A4 with wide acceptor specificity for transglycosylation. Applied Biochemistry and Biotechnology, 174(1), 328–338.

    Article  CAS  PubMed  Google Scholar 

  5. Du, F., Zhu, M., Wang, H., & Ng, T. (2013). Purification and characterization of an α-galactosidase from Phaseolus coccineus seeds showing degrading capability on raffinose family oligosaccharides. Plant Physiology and Biochemistry, 69, 49–53.

    Article  CAS  PubMed  Google Scholar 

  6. Lidove, O., West, M. L., Pintos-Morell, G., Reisin, R., Nicholls, K., Figuera, L. E., Parini, R., Carvalho, L. R., Kampmann, C., Pastores, G. M., & Mehta, A. (2010). Effects of enzyme replacement therapy in Fabry disease—a comprehensive review of the medical literature. Genetics in Medicine, 12(11), 668–679.

    Article  CAS  PubMed  Google Scholar 

  7. Chapanian, R., Kwan, D. H., Constantinescu, I., Shaikh, F. A., Rossi, N. A. A., Withers, S. G., & Kizhakkedathu, J. N. (2014). Enhancement of biological reactions on cell surfaces via macromolecular crowding. Nature Communications, 5(1), 1–12.

    Article  CAS  Google Scholar 

  8. Panwar, D., Shubhashini, A., Chaudhari, S. R., Prashanth, K. H., & Kapoor, M. (2020). GH36 α-galactosidase from Lactobacillus plantarum WCFS1 synthesize Gal-α-1, 6 linked prebiotic α-galactooligosaccharide by transglycosylation. International Journal of Biological Macromolecules, 144, 334–342.

    Article  CAS  PubMed  Google Scholar 

  9. Linden, J. C. (1982). Immobilized α-d-galactosidase in the sugar beet industry. Enzyme and Microbial Technology, 4(3), 130–136.

    Article  CAS  Google Scholar 

  10. Rättö, M., Siika-aho, M., Buchert, J., Valkeajävi, A., & Viikari, L. (1993). Enzymatic hydrolosis of isolated and fibre-bound galactoglucomannans from pine-wood and pine kraft pulp. Applied Microbiology and Biotechnology, 40(2-3), 449–454.

    Article  Google Scholar 

  11. Bulpin, P. V., Gidley, M. J., Jeffcoat, R., & Underwood, D. R. (1990). Development of a biotechnological process for the modification of galactomannan polymers with plant α-galactosidase. Carbohydrate Polymers, 12(2), 155–168.

    Article  CAS  Google Scholar 

  12. Garcia-Galan, C., Berenguer-Murcia, Á., Fernandez-Lafuente, R., & Rodrigues, R. C. (2011). Potential of different enzyme immobilization strategies to improve enzyme performance. Advanced Synthesis and Catalysis, 353(16), 2885–2904.

    Article  CAS  Google Scholar 

  13. Stepankova, V., Bidmanova, S., Koudelakova, T., Prokop, Z., Chaloupkova, R., & Damborsky, J. (2013). Strategies for stabilization of enzymes in organic solvents. ACS Catalysis, 3(12), 2823–2836.

    Article  CAS  Google Scholar 

  14. Kapoor, M., & Kuhad, R. C. (2007). Immobilization of xylanase from Bacillus pumilus strain MK001 and its application in production of xylo-oligosaccharides. Applied Biochemistry and Biotechnology, 142(2), 125–138.

    Article  CAS  PubMed  Google Scholar 

  15. Panwar, D., Kaira, G. S., & Kapoor, M. (2017). Cross-linked enzyme aggregates (CLEAs) and magnetic nanocomposite grafted CLEAs of GH26 endo-β-1, 4-mannanase: improved activity, stability and reusability. International Journal of Biological Macromolecules, 105(Pt 1), 1289–1299.

    Article  CAS  PubMed  Google Scholar 

  16. Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R. C., & Fernandez-Lafuente, R. (2014). Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Advances, 4(4), 1583–1600.

    Article  CAS  Google Scholar 

  17. Zhang, Y., Ge, J., & Liu, Z. (2015). Enhanced activity of immobilized or chemically modified enzymes. ACS Catalysis, 5(8), 4503–4513.

    Article  CAS  Google Scholar 

  18. Cui, J., & Jia, S. (2017). Organic–inorganic hybrid nanoflowers: a novel host platform for immobilizing biomolecules. Coordination Chemistry Reviews, 352, 249–263.

    Article  CAS  Google Scholar 

  19. Wu, X., Hou, M., & Ge, J. (2015). Metal–organic frameworks and inorganic nanoflowers: a type of emerging inorganic crystal nanocarrier for enzyme immobilization. Catalysis Science & Technology, 5(12), 5077–5085.

    Article  CAS  Google Scholar 

  20. Cao, L. (2005). Immobilised enzymes: science or art? Current Opinion in Chemical Biology, 9(2), 217–226.

    Article  CAS  PubMed  Google Scholar 

  21. Sheldon, R. A. (2011). Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs). Applied Microbiology and Biotechnology, 92(3), 467–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bian, H., Cao, M., Wen, H., Tan, Z., Jia, S., & Cui, J. (2019). Biodegradation of polyvinyl alcohol using cross-linked enzyme aggregates of degrading enzymes from Bacillus niacini. International Journal of Biological Macromolecules, 124, 10–16.

    Article  CAS  PubMed  Google Scholar 

  23. López-Serrano, P., Cao, L., Van Rantwijk, F., & Sheldon, R. A. (2002). Cross-linked enzyme aggregates with enhanced activity: application to lipases. Biotechnology Letters, 24(16), 1379–1383.

    Article  Google Scholar 

  24. Schoevaart, R., Wolbers, M. W., Golubovic, M., Ottens, M., Kieboom, A. P. G., Van Rantwijk, F., et al. (2004). Preparation, optimization, and structures of cross-linked enzyme aggregates (CLEAs). Biotechnology and Bioengineering, 87(6), 754–762.

    Article  CAS  PubMed  Google Scholar 

  25. Mateo, C., Palomo, J. M., Van Langen, L. M., Van Rantwijk, F., & Sheldon, R. A. (2004). A new, mild cross-linking methodology to prepare cross-linked enzyme aggregates. Biotechnology and Bioengineering, 86(3), 273–276.

    Article  CAS  PubMed  Google Scholar 

  26. Wilson, L., Fernández-Lorente, G., Fernández-Lafuente, R., Illanes, A., Guisán, J. M., & Palomo, J. M. (2006). CLEAs of lipases and poly-ionic polymers: a simple way of preparing stable biocatalysts with improved properties. Enzyme and Microbial Technology, 39(4), 750–755.

    Article  CAS  Google Scholar 

  27. Galvis, M., Barbosa, O., Ruiz, M., Cruz, J., Ortiz, C., Torres, R., & Fernandez-Lafuente, R. (2012). Chemical amination of lipase B from Candida antarctica is an efficient solution for the preparation of crosslinked enzyme aggregates. Process Biochemistry, 47(12), 2373–2378.

    Article  CAS  Google Scholar 

  28. Bhattacharya, A., & Pletschke, B. I. (2014). Magnetic cross-linked enzyme aggregates (CLEAs): a novel concept towards carrier free immobilization of lignocellulolytic enzymes. Enzyme and Microbial Technology, 61, 17–27.

    Article  PubMed  CAS  Google Scholar 

  29. Nadar, S. S., & Rathod, V. K. (2016). Magnetic macromolecular cross linked enzyme aggregates (CLEAs) of glucoamylase. Enzyme and Microbial Technology, 83, 78–87.

    Article  CAS  PubMed  Google Scholar 

  30. Bilal, M., Zhao, Y., Rasheed, T., & Iqbal, H. M. (2018). Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review. International Journal of Biological Macromolecules, 120(Pt B), 2530–2544.

    Article  CAS  PubMed  Google Scholar 

  31. Nguyen, V. D., Styevkó, G., Madaras, E., Haktanirlar, G., Tran, A. T., Bujna, E., et al. (2019). Immobilization of β-galactosidase on chitosan-coated magnetic nanoparticles and its application for synthesis of lactulose-based galactooligosaccharides. Process Biochemistry, 84, 30–38.

    Article  CAS  Google Scholar 

  32. Cipolatti, E. P., Valério, A., Nicoletti, G., Theilacker, E., Araújo, P. H., Sayer, C., et al. (2014). Immobilization of Candida antarctica lipase B on PEGylated poly (urea-urethane) nanoparticles by step miniemulsion polymerization. Journal of Molecular Catalysis B: Enzymatic, 109, 116–121.

    Article  CAS  Google Scholar 

  33. Wang, X. Y., Jiang, X. P., Li, Y., Zeng, S., & Zhang, Y. W. (2015). Preparation Fe3O4@ chitosan magnetic particles for covalent immobilization of lipase from Thermomyces lanuginosus. International Journal of Biological Macromolecules, 75, 44–50.

    Article  CAS  PubMed  Google Scholar 

  34. Pan, C., Hu, B., Li, W., Sun, Y. I., Ye, H., & Zeng, X. (2009). Novel and efficient method for immobilization and stabilization of β-d-galactosidase by covalent attachment onto magnetic Fe3O4–chitosan nanoparticles. Journal of Molecular Catalysis B: Enzymatic, 61(3-4), 208–215.

    Article  CAS  Google Scholar 

  35. Sadeghzadeh, S., Nejad, Z. G., Ghasemi, S., Khafaji, M., & Borghei, S. M. (2020). Removal of bisphenol A in aqueous solution using magnetic cross-linked laccase aggregates from Trametes hirsuta. Bioresource Technology, 360 123169.

  36. de Oliveira, R. L., da Silva, M. F., da Silva, S. P., de Araújo, A. C. V., Cavalcanti, J. V. F. L., Converti, A., & Porto, T. S. (2020). Fructo-oligosaccharides production by an Aspergillus aculeatus commercial enzyme preparation with fructosyl transferase activity covalently immobilized on Fe3O4–chitosan-magnetic nanoparticles. International Journal of Biological Macromolecules, 150, 922–929.

    Article  PubMed  CAS  Google Scholar 

  37. Montazeri, E., & Torabizadeh, H. (2020). Nano co-immobilization of α-amylase and maltogenic amylase by nanomagnetic combi-cross-linked enzyme aggregates method for maltose production from corn starch. Carbohydrate Research, 488, 107904.

    Article  PubMed  CAS  Google Scholar 

  38. Cui, J., Cui, L., Jia, S., Su, Z., & Zhang, S. (2016). Hybrid cross-linked lipase aggregates with magnetic nanoparticles: a robust and recyclable bio-catalysis for the epoxidation of oleic acid. Journal of Agricultural and Food Chemistry, 64(38), 7179–7187.

    Article  CAS  PubMed  Google Scholar 

  39. Cui, J., Zhao, Y., Feng, Y., Lin, T., Zhong, C., Tan, Z., & Jia, S. (2017). Encapsulation of spherical cross-linked phenylalanine ammonia lyase aggregates in mesoporous biosilica. Journal of Agricultural and Food Chemistry, 65(3), 618–625.

    Article  CAS  PubMed  Google Scholar 

  40. Cui, J., Tan, Z., Han, P., Zhong, C., & Jia, S. (2017). Enzyme shielding in a large mesoporous hollow silica shell for improved recycling and stability based on CaCO3 microtemplates and biomimetic silicification. Journal of Agricultural and Food Chemistry, 65(19), 3883–3890.

    Article  CAS  PubMed  Google Scholar 

  41. Li, G. Y., Jiang, Y. R., Huang, K. L., Ding, P., & Chen, J. (2008). Preparation and properties of magnetic Fe3O4–chitosan nanoparticles. Journal of Alloys and Compounds, 466(1-2), 451–456.

    Article  CAS  Google Scholar 

  42. Xu, J., Sun, J., Wang, Y., Sheng, J., Wang, F., & Sun, M. (2014). Application of iron magnetic nanoparticles in protein immobilization. Molecules, 19(8), 11465–11486.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Matsuno, R., Yamamoto, K., Otsuka, H., & Takahara, A. (2004). Polystyrene-and poly (3-vinylpyridine)-grafted magnetite nanoparticles prepared through surface-initiated nitroxide-mediated radical polymerization. Macromolecules, 37(6), 2203–2209.

    Article  CAS  Google Scholar 

  44. Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40(6), 1451–1463.

    Article  CAS  Google Scholar 

  45. Barbosa, O., Torres, R., Ortiz, C., & Fernandez-Lafuente, R. (2012). Versatility of glutaraldehyde to immobilize lipases: effect of the immobilization protocol on the properties of lipase B from Candida antarctica. Process Biochemistry, 47(8), 1220–1227.

    Article  CAS  Google Scholar 

  46. Bolivar, J. M., Rocha-Martin, J., Mateo, C., Cava, F., Berenguer, J., Vega, D., Fernandez-Lafuente, R., & Guisan, J. M. (2009). Purification and stabilization of a glutamate dehygrogenase from Thermus thermophilus via oriented multisubunit plus multipoint covalent immobilization. Journal of Molecular Catalysis B: Enzymatic, 58(1-4), 158–163.

    Article  CAS  Google Scholar 

  47. Mutra, R., Joseph, J. E., Panwar, D., Kaira, G. S., & Kapoor, M. (2018). Low molecular weight α-galactosidase from black gram (Vigna mungo): purification and insights towards biochemical and biophysical properties. International Journal of Biological Macromolecules, 119, 770–778.

    Article  CAS  PubMed  Google Scholar 

  48. Dixon, M. (1953). The determination of enzyme inhibitor constants. Biochemical Journal, 55(1), 170–171.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Talekar, S., Ghodake, V., Ghotage, T., Rathod, P., Deshmukh, P., Nadar, S., Mulla, M., & Ladole, M. (2012). Novel magnetic cross-linked enzyme aggregates (magnetic CLEAs) of alpha amylase. Bioresource Technology, 123, 542–547.

    Article  CAS  PubMed  Google Scholar 

  50. Hassani, T., Ba, S., & Cabana, H. (2013). Formation of enzyme polymer engineered structure for laccase and cross-linked laccase aggregates stabilization. Bioresource Technology, 128, 640–645.

    Article  CAS  PubMed  Google Scholar 

  51. Zhen, Q., Wang, M., Qi, W., Su, R., & He, Z. (2013). Preparation of β-mannanase CLEAs using macromolecular cross-linkers. Catalysis Science & Technology, 3(8), 1937–1941.

    Article  CAS  Google Scholar 

  52. Hosseini, S. M., Kim, S. M., Sayed, M., Younesi, H., Bahramifar, N., Park, J. H., & Pyo, S. H. (2019). Lipase-immobilized chitosan-crosslinked magnetic nanoparticle as a biocatalyst for ring opening esterification of itaconic anhydride. Biochemical Engineering Journal, 143, 141–150.

    Article  CAS  Google Scholar 

  53. Betancor, L., López-Gallego, F., Hidalgo, A., Alonso-Morales, N., Mateo, G. D. O. C., Fernández-Lafuente, R., & Guisán, J. M. (2006). Different mechanisms of protein immobilization on glutaraldehyde activated supports: effect of support activation and immobilization conditions. Enzyme and Microbial Technology, 39(4), 877–882.

    Article  CAS  Google Scholar 

  54. Dal Magro, L., Kornecki, J. F., Klein, M. P., Rodrigues, R. C., & Fernandez-Lafuente, R. (2020). Pectin lyase immobilization using the glutaraldehyde chemistry increases the enzyme operation range. Enzyme and Microbial Technology, 132, 109397.

    Article  CAS  PubMed  Google Scholar 

  55. Moradi, S., Khodaiyan, F., & Razavi, S. H. (2019). Green construction of recyclable amino-tannic acid modified magnetic nanoparticles: application for β-glucosidase immobilization. International Journal of Biological Macromolecules, 154, 1366–1374. https://doi.org/10.1016/j.ijbiomac.2019.11.016.

    Article  CAS  PubMed  Google Scholar 

  56. Wang, D., & Jiang, W. (2019). Preparation of chitosan-based nanoparticles for enzyme immobilization. International Journal of Biological Macromolecules, 126, 1125–1132.

    Article  CAS  PubMed  Google Scholar 

  57. Cheng, G., Pi, Z., Zheng, Z., Liu, S., Liu, Z., & Song, F. (2020). Magnetic nanoparticles-based lactate dehydrogenase microreactor as a drug discovery tool for rapid screening inhibitors from natural products. Talanta, 209, 120554.

    Article  CAS  PubMed  Google Scholar 

  58. Singh, N., Srivastava, G., Talat, M., Raghubanshi, H., Srivastava, O. N., & Kayastha, A. M. (2014). Cicer α-galactosidase immobilization onto functionalized graphene nanosheets using response surface method and its applications. Food Chemistry, 142, 430–438.

    Article  CAS  PubMed  Google Scholar 

  59. Mosbach, K. (1971). Enzymes bound to artificial matrixes. Scientific American, 224(3), 26–33.

    Article  CAS  PubMed  Google Scholar 

  60. Mosafa, L., Moghadam, M., & Shahedi, M. (2013). Papain enzyme supported on magnetic nanoparticles: preparation, characterization and application in the fruit juice clarification. Chinese Journal of Catalysis, 34(10), 1897–1904.

    Article  CAS  Google Scholar 

  61. Fernandez-Lopez, L., Pedrero, S. G., Lopez-Carrobles, N., Gorines, B. C., Virgen-Ortíz, J. J., & Fernandez-Lafuente, R. (2017). Effect of protein load on stability of immobilized enzymes. Enzyme and Microbial Technology, 98, 18–25.

    Article  CAS  PubMed  Google Scholar 

  62. Tang, W., Chen, C., Sun, W., Wang, P., & Wei, D. (2019). Low-cost mussel inspired poly (catechol/polyamine) modified magnetic nanoparticles as a versatile platform for enhanced activity of immobilized enzyme. International Journal of Biological Macromolecules, 128, 814–824.

    Article  CAS  PubMed  Google Scholar 

  63. Dal Magro, L., de Moura, K. S., Backes, B. E., de Menezes, E. W., Benvenutti, E. V., Nicolodi, S., Klein, M. P., Fernandez-Lafuente, R., & Rodrigues, R. C. (2019). Immobilization of pectinase on chitosan-magnetic particles: influence of particle preparation protocol on enzyme properties for fruit juice clarification. Biotechnology Reports, 24, e00373.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Jaiswal, N., Pandey, V. P., & Dwivedi, U. N. (2016). Immobilization of papaya laccase in chitosan led to improved multipronged stability and dye discoloration. International Journal of Biological Macromolecules, 86, 288–295.

    Article  CAS  PubMed  Google Scholar 

  65. George, S. P., Ahmad, A., & Rao, M. B. (2001). A novel thermostable xylanase from Thermomonospora sp.: influence of additives on thermostability. Bioresource Technology, 78(3), 221–224.

    Article  CAS  PubMed  Google Scholar 

  66. Fujimoto, Z., Kaneko, S., Momma, M., Kobayashi, H., & Mizuno, H. (2003). Crystal structure of rice α-galactosidase complexed with D-galactose. Journal of Biological Chemistry, 278(22), 20313–20318.

    Article  CAS  PubMed  Google Scholar 

  67. Kim, W. D., Kobayashi, O., Kaneko, S., Sakakibara, Y., Park, G. G., Kusakabe, I., Tanaka, H., & Kobayashi, H. (2002). α-Galactosidase from cultured rice (Oryza sativa L. var. Nipponbare) cells. Phytochemistry, 61(6), 621–630.

    Article  CAS  PubMed  Google Scholar 

  68. Liu, X., Chen, X., Li, Y., Wang, X., Peng, X., & Zhu, W. (2012). Preparation of superparamagnetic Fe3O4@ alginate/chitosan nanospheres for Candida rugosa lipase immobilization and utilization of layer-by-layer assembly to enhance the stability of immobilized lipase. ACS Applied Materials & Interfaces, 4(10), 5169–5178.

    Article  CAS  Google Scholar 

  69. Tang, C., Saquing, C. D., Morton, S. W., Glatz, B. N., Kelly, R. M., & Khan, S. A. (2014). Cross-linked polymer nanofibers for hyperthermophilic enzyme immobilization: approaches to improve enzyme performance. ACS Applied Materials & Interfaces, 6(15), 11899–11906.

    Article  CAS  Google Scholar 

  70. Rehman, S., Bhatti, H. N., Bilal, M., & Asgher, M. (2016). Cross-linked enzyme aggregates (CLEAs) of Pencilluim notatum lipase enzyme with improved activity, stability and reusability characteristics. International Journal of Biological Macromolecules, 91, 1161–1169.

    Article  CAS  PubMed  Google Scholar 

  71. Soozanipour, A., Taheri-Kafrani, A., Barkhori, M., & Nasrollahzadeh, M. (2019). Preparation of a stable and robust nanobiocatalyst by efficiently immobilizing of pectinase onto cyanuric chloride-functionalized chitosan grafted magnetic nanoparticles. Journal of Colloid and Interface Science, 536, 261–270.

    Article  CAS  PubMed  Google Scholar 

  72. Júnior, J. C. B., Viana, P. A., de Rezende, S. T., Soares, N. D. F. F., & Guimarães, V. M. (2018). Immobilization of an alpha-galactosidase from Debaryomyces hansenni UFV-1 in cellulose film and its application in oligosaccharides hydrolysis. Food and Bioproducts Processing, 111, 30–36.

    Article  CAS  Google Scholar 

Download references

Funding

We thank Director, CSIR-CFTRI, for constant encouragement and support. The work was carried out under the CSIR networking project entitled Nano-materials: Applications and Impact on Safety, Health and Environment (NanoSHE, Project No. BSC0112) under the 12th five year plan, Govt of India, New Delhi. The grant of Junior Research Fellowship (JRF) to DP and PRM from CSIR and UGC, Govt. of India, New Delhi, respectively is gratefully acknowledged. JEJ thank CSIR, Ministry of Science and Technology, Govt. of India, for providing the project fellowship under NanoSHE, Project No. BSC0112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Kapoor.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Synthesis of chitosan magnetic nanocomposites of soluble and cross-linked VM-αGal.

• VM-αGal-MC and VM-αGal-M were more active and stable than VM-αGal between pH 3 and 8.

• VM-αGal-MC and VM-αGal-M showed up to 25 °C higher temperature optima than VM-αGal.

• VM-αGal-MC and VM-αGal-M showed thermal stability up to 85 °C.

• VM-αGal-MC and VM-αGal-M repeatedly hydrolyzed the substrate for 10 cycles.

Electronic supplementary material

ESM 1

(DOCX 12 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joseph, J.E., Mary, P.R., Haritha, K.V. et al. Soluble and Cross-Linked Aggregated Forms of α-Galactosidase from Vigna mungo Immobilized on Magnetic Nanocomposites: Improved Stability and Reusability. Appl Biochem Biotechnol 193, 238–256 (2021). https://doi.org/10.1007/s12010-020-03408-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03408-5

Keywords

Navigation