Skip to main content
Log in

Analysis of the Brønsted Relation in the Framework of the Non-equilibrium Approach. The Gas-Phase Reactions of Benzenes with the CH2CN Anion

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The problem of the unit slope of the Brønsted plot for the proton transfer reaction from the “hard” CH-acids is considered by the example of a series of gas-phase deprotonation reactions of substituted benzenes with the CH2CN anion. The discussion is conducted within the framework of the theory of non-equilibrium reactions. The use of intramolecular reorganization (IMR) method allows calculate directly the structure and energy of the activated complex. A comparison is made of two models. In model 1, as with the standard approach, proton tunnelling process is associated with the system potential V(r) (r is proton coordinate), whereas in model 2, it is associated with the potential of reaction zone X (including the breaking (A‒H) and formed (H‒B) bonds), VX(r). The VX energy has been calculated using the Mayer’s APOST program, designed to calculate the mono- and diatomic components of the system energy. The accepted level of calculation of the energies V and VX (HF/6-31G**//HF/3-21G**) has been determined by APOST program capabilities. Key feature of model 2 is almost complete insensitivity of the proton tunneling frequency, νt, to changes of reaction energy ΔE00. The end result is an increase of the Brønsted coefficient α from 0.67 (for model 1) to 0.83. It is shown that when going from the gas phase to the solution (reaction in DMSO medium), α value increases to 0.97.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. It is assumed that the position of the minima in the V* and V potentials coincides.

  2. In the Marcus model [18, 19] \(E_{{\text{a}}}^{{{\text{eq}}}}\) corresponds to the “working term,” wr , and \(E_{{\text{a}}}^{{{\text{neq}}}}\) corresponds to the free activation energy of the collision complex, ΔG*.

  3. A priori we define the AC positions on the structural coordinate in models 1 and 2 as not the same. In fact, \(\rho _{1}^{*}\)= \(\rho _{2}^{*}\) (see below).

  4. As can be seen, none of these reactions is barrier-free. Generally speaking, it is difficult to expect the barrier-free mechanism to be common for a sufficiently extended reaction series; in this case, in particular, the energy ΔЕ00 interval within the series is 28 kcal/mol (Table 3).

REFERENCES

  1. I. A. Romanskii, Comput. Theor. Chem. 1127, 52 (2018). https://doi.org/10.1016/j.comptc.2018.01.019

    Article  CAS  Google Scholar 

  2. J. N. Broensted and K. Pedersen, Z. Phys. Chem. 108, 185 (1924). https://doi.org/10.1515/zpch-1924-10814

  3. A. I. Shatenshtein, Adv. Phys. Org. Chem. 1, 155 (1963). https://doi.org/10.1016/S0065-3160(08)60278-6

    Article  CAS  Google Scholar 

  4. A. Streitwieser, P. C. Mowery, R. G. Jesaites, J. R. Wright, P. H. Owens, and D. M. E. Reuben, in Proceedings of the Jerusalem Symposium on Quantum Chemistry and Biochemistry,1970, Vol. 2, p. 160.

  5. M. Szwarc, A. Streitwieser, and P. C. Mowery, in Ions and Ion Pairs in Organic Reactions, Ed. by M. Szwarc (Wiley, New York, 1974), p. 171.

    Google Scholar 

  6. A. Streitwieser, R. A. Caldwell, R. G. Lawler, and G. R. Ziegler, J. Am. Chem. Soc. 87, 5399 (1965). https://doi.org/10.1021/ja00951a026

    Article  CAS  Google Scholar 

  7. I. O. Shapiro, Yu. I. Ranneva, and A. I. Shatenshtein, Russ. J. Gen. Chem. 49, 2030 (1979).

    CAS  Google Scholar 

  8. A. Streitwieser, J. Q. Hudson, and F. Mares, J. Am. Chem. Soc. 90, 648 (1968). https://doi.org/10.1021/ja01005a017

    Article  CAS  Google Scholar 

  9. C. D. Broaddus, J. Org. Chem. 35, 10 (1970). https://doi.org/10.1021/jo00826a003

    Article  CAS  Google Scholar 

  10. A. A. Streitwieser, P. J. Scannon, and H. M. Niemeyer, J. Am. Chem. Soc. 94, 7936 (1972). https://doi.org/10.1021/ja00777a053

    Article  CAS  Google Scholar 

  11. R. P. Bell and S. Grainger, J. Chem. Soc., Perkin Trans. 2, No. 12, 1367 (1976). https://doi.org/10.1039/p29760001367

  12. A. Streitwieser, D. Holtz, G. R. Ziegler, J. O. Stoffer, M. L. Brokaw, and F. Guibe, J. Am. Chem. Soc. 98, 5229 (1976). https://doi.org/10.1021/ja00433a030

    Article  CAS  Google Scholar 

  13. A. I. Shatenshtein, L. I. Zakharkin, E. S. Petrov, E. A. Yakovleva, F. S. Yakushin, Z. Vukmirovich, G. G. Isaeva, and V. N. Kalinin, J. Organomet. Chem. 23, 313 (1970). https://doi.org/10.1016/S0022-328X(00)92944-9

  14. A. Streitwieser, K. Shah, J. R. Reyes, X. Zhang, N. R. Davis, and E. C. Wu, J. Phys. Chem. A 114, 8793 (2010). https://doi.org/10.1021/jp101791e

    Article  CAS  PubMed  Google Scholar 

  15. N. G. Zharova, Ju. I. Ranneva, E. D. German, and I. O. Shapiro, Russ. J. Phys. Chem. 64, 1537 (1990).

    CAS  Google Scholar 

  16. V. G. Levich, R. R. Dogonadze, E. D. German, et al., Electrochim. Acta 15, 353 (1970). https://doi.org/10.1016/0013-4686(70)80027-5

    Article  CAS  Google Scholar 

  17. E. D. German and R. R. Dogonadze, in The Proton in the Chemistry, Ed. by R. P. Bell (Springer, New York, 1977), Supplement, p. 350.

  18. R. A. Marcus, J. Phys. Chem. 72, 891 (1968). https://doi.org/10.1021/j100849a019

    Article  CAS  Google Scholar 

  19. A. D. Cohen and R. A. Marcus, J. Phys. Chem. 72, 4249 (1968). https://doi.org/10.1021/j100858a052

    Article  CAS  Google Scholar 

  20. I. A. Romanskii, Russ. Chem. Bull. 57, 1843 (2008). https://doi.org/10.1007/s11172-008-0249-7

    Article  CAS  Google Scholar 

  21. A. M. Kuznetsov, J. Electroanal. Chem. 204, 97 (1986).

    Article  CAS  Google Scholar 

  22. A. Hamza and I. Mayer, Theor. Chem. Acc. 109, 91 (2003). https://doi.org/10.1007/s00214-002-0426-y

    Article  CAS  Google Scholar 

  23. I. Mayer, Phys. Chem. Chem. Phys. 8, 4630 (2006). https://doi.org/10.1039/C1CP22476J

    Article  CAS  PubMed  Google Scholar 

  24. I. Mayer and A. Hamza, APOST, Version 1.0, 2000. http://occam.chemres.hu/programs.

  25. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, et al., Gaussian 03, Revision C.02 (Gaussian Inc., Wallingford CT, 2004).

  26. R. L. Samorai and D. F. Hornig, J. Chem. Phys. 36, 1980 (1962). https://doi.org/10.1063/1.1732814

    Article  Google Scholar 

  27. https://www.python3.x.docs.

  28. J. Brickmann, in The Hydrogen Bond–Recent Developments in Theory and Experiments, Ed. by P. Schuster, G. Zandel, and C. Sandorfy (North-Holland, Amsterdam, 1976), p. 217.

    Google Scholar 

  29. M. M. Szczesniak and S. Scheiner, J. Phys. Chem. 89, 1835 (1985). https://doi.org/10.1021/j100255a059

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author would like to thank M.V. Basilevsky for valuable remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Romanskii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanskii, I.A. Analysis of the Brønsted Relation in the Framework of the Non-equilibrium Approach. The Gas-Phase Reactions of Benzenes with the CH2CN Anion. Russ. J. Phys. Chem. 94, 1866–1876 (2020). https://doi.org/10.1134/S003602442009023X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602442009023X

Keywords:

Navigation