Skip to main content
Log in

Sonochemical Transformations of Methane and Ethylene in Aqueous Solutions under Conditions of Cavitation

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The conversion of methane, ethylene and mixtures of them in aqueous solutions was studied using ultrasonic vibrations with a frequency of 22 kHz under conditions of cavitation. It is found that formaldehyde, the main product, forms even if there is no dissolved oxygen in the initial solution. It is shown that the rate of accumulation of formaldehyde depends on the power of the ultrasound and the amount of molecular oxygen introduced into the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. A. Margulis, Fundamentals of Sonochemistry (Chemical Reactions in Acoustic Fields) (Vysshaya Shkola, Moscow, 1984) [in Russian].

    Google Scholar 

  2. K. S. Suslick, Yu. Didenko, M. M. Fang, et al., Phil. Trans. R. Soc. London, Ser. A 357, 335 (1999).

    Article  CAS  Google Scholar 

  3. E. A. Smorodov, R. N. Galiakhmetov, and M. A. Il’gamov, Physics and Chemistry of Cavitation (Ross. Akad. Nauk, Ufim. Nauch. Tsentr, Inst. Mekh., Ufa, 2008).

    Google Scholar 

  4. J. C. Colmenares and G. Chatel, Sonochemistry. From Basic Principles to Innovative Applications (Springer, Berlin, Heidelberg, 2017).

    Book  Google Scholar 

  5. D. Bernard and B. Primius, Ultrason. Sonochem. 15, 78 (2008).

    Article  Google Scholar 

  6. S. A. Voropaev, V. M. Shkinev, A. Yu. Dnestrovskii, E. A. Ponomareva, A. S. Aronin, O. L. Bondarev, V. V. Strazdovskii, V. N. Skorobogatskii, A. A. Eliseev, B. Ya. Spivakov, and E. M. Galimov, Dokl. Phys. 57, 373 (2012).

    Article  CAS  Google Scholar 

  7. S. A. Voropaev, A. Yu. Dnestrovskii, V. N. Skorobogatskii, A. S. Aronin, V. M. Shkinev, O. L. Bondarev, V. V. Strazdovskii, A. A. Eliseev, E. A. Ponomareva, N. V. Dushenko, and E. M. Galimov, Dokl. Phys. 59, 503 (2014).

    Article  CAS  Google Scholar 

  8. S. J. Shaw and P. D. M. Spelt, J. Fluid Mech. 646, 363 (2010). https://doi.org/10.1017/S0022112009993338

    Article  Google Scholar 

  9. R. I. Nigmatulin, A. A. Aganin, D. Yu. Toporkov, and M. A. Il’gamov, Dokl. Phys. 59, 431 (2014).

    Article  CAS  Google Scholar 

  10. A. A. Aganin and D. Yu. Toporkov, Uchen. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 159, 271 (2017).

    Google Scholar 

  11. A. Gaydon and I. Hurle, The Shock Tube in High-Temperature Chemical Physics (Springer, New York, 1963).

    Google Scholar 

  12. G. L. Agafonov and A. M. Tereza, Russ. J. Phys. Chem. B 9, 92 (2015).

    Article  CAS  Google Scholar 

  13. D. F. Davidson, M. A. Oehlschlaeger, J. T. Herbon, and R. K. Hanson, Proc. Combust. Inst. 29, 1295 (2002).

    Article  CAS  Google Scholar 

  14. M. J. A. Rickard, J. M. Hall, and E. L. Petersen, Proc. Combust. Inst. 30, 1915 (2005).

    Article  Google Scholar 

  15. O. G. Penyazkov, K. A. Ragotner, A. J. Dean, and B. Varatharajan, Proc. Combust. Inst. 30, 1941 (2005).

    Article  Google Scholar 

  16. M. A. Margulis, Russ. J. Phys. Chem. A 82, 1407 (2008). https://doi.org/10.1134/S004445370808030X

    Article  CAS  Google Scholar 

  17. M. A. Margulis, Russ. J. Phys. Chem. A 82, 1407 (2008).

    Article  CAS  Google Scholar 

  18. I. E. El’piner and A. V. Sokol’skaya, Zh. Fiz. Khim. 45, 3071 (1971).

    Google Scholar 

  19. M. A. Margulis, Zh. Fiz. Khim. 50, 2531 (1976).

    CAS  Google Scholar 

  20. M. A. Margulis and I. M. Margulis, Russ. J. Phys. Chem. A 77, 1183 (2003).

    Google Scholar 

  21. M. A. Margulis and I. M. Margulis, Ultrason. Sonochem. 10, 343 (2003).

    Article  CAS  Google Scholar 

  22. M. A. Margulis and I. M. Margulis, Acoust. Phys. 51, 695 (2005).

    Article  CAS  Google Scholar 

  23. K. S. Suslick, D. A. Hammerton, and R. E. Cline, J. Am. Soc. 108, 5641 (1986).

    Article  CAS  Google Scholar 

  24. Sumet Umchid and Kakanumporn Prasanpanich, in Proceedings of the World Congress on Engineering,2013 (WCE, London, UK, 2013), Vol. 2.

  25. K. M. Swamy and F. J. Keil, Ultrason. Sonochem. 9 (6), 305 (2002).

    Article  CAS  Google Scholar 

  26. M. A. Margulis, Phys. Usp. 43, 259 (2000).

    Article  CAS  Google Scholar 

  27. The Chemist’s Handbook (Khimiya, Moscow, Leningrad, 1964), Vol. 2 [in Russian].

  28. M. A. Margulis, High Energy Chem. 38, 135 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Arsentev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arsentev, S.D. Sonochemical Transformations of Methane and Ethylene in Aqueous Solutions under Conditions of Cavitation. Russ. J. Phys. Chem. 94, 1811–1815 (2020). https://doi.org/10.1134/S0036024420090022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420090022

Keywords:

Navigation