Skip to main content
Log in

Molecular Distributions in a Stratified Vapor–Liquid System inside a Slit-Like Pore at Three Interfaces

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A unified description of three types of two-phase interfaces (vapor–liquid, solid–vapor, and solid–liquid) at a vapor–liquid meniscus inside a slit-like pore are considered on the basis of the lattice gas model. This approach allows equally accurate calculations of molecular distributions in heterogeneous distributed models of transitional regions at all interfaces. It is assumed that pore walls cannot be deformed, and they create an external field for a stratifying fluid. Adsorption films form at solid–mobile phase interfaces due to the potential of adsorbate–adsorbent interaction. The state of the coexisting vapor-in-a-pore and liquid-in-a-pore phases satisfy the equality of the chemical potential that excludes the appearance of metastable states. Conditions for distinguishing regions of the system that lie beyond solid–liquid–vapor three-phase contact are discussed. A procedure is discussed for introducing a contact angle into a liquid–vapor–solid pore wall system through molecular distributions of the adsorbate in a slit-like pore. Dependences of the width of the considered interfaces and the contact angle as a function of the pore width and pore wall potential are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. V. Lykov, Transfer Phenomena in Capillary–Porous Bodies (GITTL, Moscow, 1954) [in Russian].

    Google Scholar 

  2. P. C. Carman, Flow of Gases through Porous Media (Butterworths, London, 1956).

    Google Scholar 

  3. L. I. Heifets and A. V. Neimark, Multiphase Processes in Porous Media (Khimiya, Moscow, 1982) [in Russian].

    Google Scholar 

  4. S. Gregg and K. Sing, Adsorption, Surface Area, and Porosity (Academic, New York, 1982).

    Google Scholar 

  5. D. P. Timofeev, Adsorption Kinetics (Akad. Nauk SSSR, Moscow, 1962) [in Russian].

    Google Scholar 

  6. Yu. K. Tovbin, The Molecular Theory of Adsorption in Porous Solids (Fizmatlit, Moscow, 2012; CRC, Boca Raton, FL, 2017).

  7. V. V. Rachinskii, An Introduction to the General Theory of Sorptional and Chromatography Dynamics (Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  8. L. V. Radushkevich, The Main Problems of the Theory of Physical Adsorption (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  9. Yu. A. Chizmadzhev, V. S. Markin, M. R. Tarasevich, and Yu. G. Chirkov, Macrokinetics of Processes in Liquid Media (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  10. Ch. N. Satterfield, Mass Transfer in Heterogeneous Catalysis (MIT Press, Boston, 1969).

    Google Scholar 

  11. D. M. Ruthven, Principles of Adsorption and Adsorption Processes (Wiley, New York, 1984).

    Google Scholar 

  12. E. A. Mason and A. P. Malinauskas, Gas Transport in Porous Media: The Dusty–Gas Model (Elsevier Science, Amsterdam, 1983).

    Google Scholar 

  13. W. A. Steele, The Interactions of Gases with Solid Surfaces (Pergamon, New York, 1974).

    Google Scholar 

  14. N. N. Avgul’, A. V. Kiselev, and D. P. Poshkus, Adsorption of Gases and Vapors at Uniform Surfaces (Khimiya, Moscow, 1975) [in Russian].

    Google Scholar 

  15. A. V. Kiselev, D. P. Poshkus, and Ya. I. Yashin, Molecular Foundations of Adsorptional Chromatography (Khimiya, Moscow, 1986).

    Google Scholar 

  16. J. W. Gibbs, Elementary Principles of Statistical Mechanics (Ox Bow Press, 1981).

    Google Scholar 

  17. M. Volmer, Kinetik der Phasenbildung (Th. Steinkopf, Dresden, 1939).

    Google Scholar 

  18. M. Jaycock and J. Parfitt, Chemistry of Interfaces (Ellis Horwood, Chichester, UK, 1981).

    Google Scholar 

  19. J. Rowlinson and B. Widom, Molecular Theory of Capillarity (Oxford Univ., Oxford, UK, 1978).

    Google Scholar 

  20. T. Hill, in Catalysis, Theory and Research Methods, Collection of Articles (Inostr. Liter., Moscow, 1955), p. 276 [in Russian].

    Google Scholar 

  21. Yu. K. Tovbin and A. G. Petukhov, Russ. Chem. Bull. 57, 18 (2008).

    Article  CAS  Google Scholar 

  22. Yu. K. Tovbin, Small Systems and Fundamentals of Thermodynamics (Fizmatlit, Moscow, 2018; CRC, Boca Raton, FL, 2018).

  23. Yu. K. Tovbin, Zh. Fiz. Khim. 66, 1395 (1992).

    CAS  Google Scholar 

  24. Yu. K. Tovbin, Theory of Physicochemical Processes at the Gas–Solid Interface (Nauka, Moscow, 1990; CRC, Boca Raton, FL, 1991).

    Google Scholar 

  25. A. Adamson, The Physical Chemistry of Surfaces (Wiley, New York, 1976).

    Google Scholar 

  26. Yu. K. Tovbin, D. V. Eremich, V. N. Komarov, and E. E. Gvozdeva, Khim. Fiz. 26 (9), 98 (2007).

    Google Scholar 

  27. Yu. K. Tovbin and A. G. Petukhov, Prot. Met. Phys. Chem. Surf. 44, 236 (2008).

    CAS  Google Scholar 

  28. V. A. Kireev, Course on Physical Chemistry (Khimiya, Moscow, 1975) [in Russian].

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-03-00030a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. K. Tovbin.

Additional information

Translated by L. Chernikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaitseva, E.S., Tovbin, Y.K. Molecular Distributions in a Stratified Vapor–Liquid System inside a Slit-Like Pore at Three Interfaces. Russ. J. Phys. Chem. 94, 1761–1770 (2020). https://doi.org/10.1134/S0036024420090344

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420090344

Keywords:

Navigation