Skip to main content
Log in

Method for Calculating Changes in the Standard Gibbs Energies of Formation of Minerals that Belong to the Class of Uranophosphates

  • Published:
Radiochemistry Aims and scope

Abstract

Based on experimental and prognosticated values of changes in the standard Gibbs energies of formation (Δf) of a number of uranophosphate compounds and phosphates of various metals, expansions of potentials over oxide constituents have been obtained by using methods of linear programming. The resulting system of additive contributions was used to calculate Δf for minerals that belong to the class of uranophosphates. The estimation errors are analyzed and the suggested algorithm is compared with correlation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Belova, L.N., Geol. Rudn. Mestorozhd., 2000, vol. 42, no. 2, p. 113.

    CAS  Google Scholar 

  2. Gaskova, O.L., Boguslavsky, A.E., and Shemelina, O.V., Appl. Geochem., 2015, vol. 55, p. 152.

    CAS  Google Scholar 

  3. Sharifironizi, M., Szymanowski, J.E.S., Sigmon, G.E., Fein, J.B., Burns, P.C., and Navrotsky, A., Chem. Geol., 2016, vol. 447, p. 54.

    CAS  Google Scholar 

  4. Dutova, E.M., Nikitenkov, A.N., Pokrovskiy, V.D., Banks, D., Frengstad, B.S., and Parnachev, V.P., J. Environ. Radioact., 2017, vols. 178–179, p. 63.

    PubMed  Google Scholar 

  5. Strakhovenko, V.D. and Gas’kova, O.L., Geol. Geofiz., 2018, vol. 59, no. 4, p. 467.

    CAS  Google Scholar 

  6. Timofeev, A., Migdisov, A.A., Williams-Jones, A.E., Roback, R., Nelson, A.T., and Xu, H., Nat. Commun., 2018, vol. 9, p. 1469.

    PubMed  PubMed Central  Google Scholar 

  7. Perdrial, N., Vázquez-Ortega, A., Wang, G., Kanematsu, M., Mueller, K.T., Um, W., Steefel, C.I., O’Day, P.A., and Chorover, J., Appl. Geochem., 2018, vol. 89, p. 109.

    CAS  Google Scholar 

  8. Yu, C., Berger, T., Drake, H., Song, Z., Peltol, P., Åströma, M.E., Sci. Total Environ., 2019, vol. 663, p. 16.

    CAS  PubMed  Google Scholar 

  9. Winde, F., Hoffman, E., Espina, C., and Schuz, J., J. Geochem. Explor., 2019, vol. 204, p. 167.

    CAS  Google Scholar 

  10. Neiva, A.M.R., Carvalho, P.C.S., Antunes, I.M.H.R., Albuquerquee, M.T.D., Santosa, A.C.S., Cunhac, P.P., and Henriques, S.B.A., J. Geochem. Explor., 2019, vol. 202, p. 35.

    CAS  Google Scholar 

  11. Wu, Y., Wang, Y., and Guo, W., J. Contam. Hydrol., 2019, vol. 222, p. 41.

    CAS  PubMed  Google Scholar 

  12. Safonov, A.V., Boguslavskii, A.E., Boldyrev, K.A., and Zaitseva, L.V., Geokhimiya, 2019, vol. 64, no. 6, p. 644.

    Google Scholar 

  13. Hamza, M.F., El-Aassy, I.E., and Guibal, E., Miner. Eng., 2019, vol. 133, p. 38.

    Google Scholar 

  14. Situm, A., Beam, J.C., Hughes, K.A., Rowson, J, Essilfie-Dughan, J., Crawford, A., and Grosvenor, A.P., Appl. Geochem., 2020, p. 104459. https://doi.org/10.1016/j.apgeochem.2019.104459

    Article  CAS  Google Scholar 

  15. Chudnenko, K.V., Termodinamicheskoe modelirovanie v geokhimii: teoriya, algoritmy, programmnoe obespechenie, prilozheniya (Thermodynamic Simulation in Geochemistry: Theory, Algorithms, Software, Applications), Novosibirsk: Geo, 2010.

    Google Scholar 

  16. IMA, 2020, The New IMA List of Minerals–a Work in Progress, Updated: January, 2020. http://cnmnc.main.jp

  17. Kristallograficheskaya i kristallokhimicheskaya baza dannykh dlya mineralov i ikh strukturnykh analogov (Crystallographic and Crystal-Chemical Database for Minerals and Their Structural Analogs) http://mincryst.iem.ac.ru

  18. Muto, T., Miner. Mag., 1965, vol. 4, no. 4, p. 245.

    CAS  Google Scholar 

  19. Vochten, R.F., Haverbeke, L., and Springel, K., Miner. Mag., 1992, vol. 56, p. 367.

    CAS  Google Scholar 

  20. Cretaz, F., Szenknect, S., Clavier, N., Vitorge, P., Mesbah, A., Michael Descostes, M., Poinssot, C., and Dacheux, N., J. Nucl. Mater., 2013, vol. 442, p. 195.

    CAS  Google Scholar 

  21. Karpov, I. K. and Kashik, S.A., Geokhimiya, 1968. no. 7, p. 806.

    Google Scholar 

  22. Bychinskii, V.A., Koroleva, O.N., Oshchepkova, A.V., and Shtenberg, M.V., Izv. Tomsk. Politekh. Univ., Inzh. Georesurs., 2018, vol. 329, no. 5, p. 48.

    Google Scholar 

  23. La Iglesia, A and Felix, J.F., Geochim. Cosmochim. Acta, 1994, vol. 58, no. 19, p. 3983.

    CAS  Google Scholar 

  24. Clark, S.B., Ewing, R.C., and Schaumloffel, J.C., J. Alloys Compd., 1998, vols. 271-273, p. 189.

    Google Scholar 

  25. Garofalo, P., Audetat, A., Gunther, D., Heinrich, C.A., and Ridley, J., Am. Mineral., 2000, vol. 85, p. 78.

    CAS  Google Scholar 

  26. Gaboreau, S. and Viellard, Ph., Geochim. Cosmochim. Acta, 2004, vol. 68, p. 3307.

    CAS  Google Scholar 

  27. La Iglesia, A., Estud. Geol., 2009, vol. 65, p. 109.

    Google Scholar 

  28. Chen, F., Ewing, R.C., and Clark, S.B., Am. Mineral., 1999, vol. 84, p. 650.

    CAS  Google Scholar 

  29. Nipruk, O.V., Chernorukov, N.G., Pykhova, Yu.P., Godovanova, N.S., and Eremina, A.A., Radiochemistry, 2011, vol. 53, no. 5, p. 410. https://doi.org/10.1134/S1066362211050067

    Article  CAS  Google Scholar 

  30. Chernorukov, N.G., Nipruk, O.V., Pykhova, Yu.P., and Godovanova, N.S., Radiochemistry, 2011, vol. 53, no. 4, p. 307. https://doi.org/10.1134/S1066362211040047

    Article  CAS  Google Scholar 

  31. Suleimanov, E.V., Chernorukov, N.G., and Veridusova, V.V., Radiochemistry, 2006, vol. 48, no. 2, p. 159. https://doi.org/10.1134/S106636220602010X

    Article  CAS  Google Scholar 

  32. Suleimanov, E.V., Chernorukov, N.G., Veridusova, V.V., and Nipruk, O.V., Radiochemistry, 2006, vol. 48, no. 2, p. 141. https://doi.org/10.1134/S1066362206020093

    Article  CAS  Google Scholar 

  33. Nipruk, O.V., Pykhova, Yu.P., Chernorukov, N.G., Godovanova, N.S., and Abrazheev, R.V., Radiochemistry, 2011, vol. 53, no. 5, p. 403. https://doi.org/10.1134/S1066362211050055

    Article  CAS  Google Scholar 

  34. Nipruk, O.V., Chernorukov, N.G., Godovanova, N.S., and Arova, M.I., Radiochemistry, 2012, vol. 54, no. 6, p. 514. https://doi.org/10.1134/S1066362212060033

    Article  CAS  Google Scholar 

  35. Chernorukov, N.G., Karyakin, N.V., Suleimanov, E.V., Barch, S.V., and Alimzhanov, M.I., Radiochemistry, 2002, vol. 44, p. 216. https://doi.org/10.1023/A%3A1020386119167

    Article  CAS  Google Scholar 

  36. Pykhova, Yu, P., Cand. Sci. Dissertation (Chemistry), Nizhny Novgorod, 2011.

  37. Eremin, O.V., Vinnichenko, S.V., and Yurgenson, G.A., Dokl. Akad. Nauk, 2006, vol. 409, no. 3, p. 386.

    Google Scholar 

  38. Eremin, O.V., Rusal’, O.S., Bychinskii, V.A., Chudnenko, K.V., Fomichev, S.V., and Krenev, V.A., Zh. Neorg. Khim., 2015, vol. 60, no. 8, p. 1048.

    Google Scholar 

  39. Eremin, O.V., Phys. Chem.: Indian J., 2015, no. 10, p. 90.

    Google Scholar 

  40. Eremin, O.V., Geokhimiya, 2014. no. 9, p. 859.

    Google Scholar 

  41. Eremin, O.V., Epova, E.S., Rusal’, O.S., Filenko, R.A., Bychinskii, V.A., Chudnenko, K.V., Fomichev, S.V., and Krenev, V.A., Zh. Neorg. Khim., 2016, vol. 61, no. 8, p. 1053.

    Google Scholar 

  42. Eremin, O.V., Yurgenson, G.A., Solodukhina, M.A., and Epova, E.S., Mineral. Tekhnogeneza, 2018, no. 19, p. 103.

    Google Scholar 

  43. Eremin, O.V., Rusal’, O.S., Solodukhina, M.A., and Epova, E.S., Zh. Fiz. Khim., 2020, no. 4, p. 1. https://doi.org/10.31857/S0044453720040044

  44. Guillaumont, R., Fanghanel, T., Fuger, J., Grenthe, I., Neck, V., Palmer, D.A., and Rand, M.H., Update on the Chemical Thermodynamics of Uranium, Neptunium, and Plutonium, Amsterdam: Elsevier, 2003.

    Google Scholar 

  45. Yokokawa, H., J. Natl. Chem. Lab. Ind. (Tsukuba Ibaraki, Japan), 1988, vol. 83, p. 27.

    Google Scholar 

  46. Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L., and Nuttall, R .L., J. Phys. Chem., Ref. Data, 1982, vol. 11, suppl. 2. https://doi.org/10.1063/1.555845

  47. Ogorodova, L., Vigasina, M., Mel’chakova, L., Rusakov, V., Kosova, D., Ksenofontov, D., and Bryzgalov, I., J. Chem. Thermodyn., 2017, vol. 110, p. 193.

    CAS  Google Scholar 

  48. Vieillard, p. and Tardy, Y., Thermochemical Properties of Phosphates Phosphate Minerals, Nriagu, J.O. and Moore, P.B., Eds., Berlin: Springer, 1984.

    Google Scholar 

  49. Majzlan, J., Amoako, F., Kindlova, H., and Drahota, P., Appl. Geochem., 2015, vol. 61, p. 294.

    CAS  Google Scholar 

  50. Mercury, L., Vieillard, Ph., and Tardy, Y., Appl. Geochem., 2001, vol. 16, p. 161.

    CAS  Google Scholar 

  51. Gorman-Lewis, D., Burns, P.C., and Fein, J.B., J. Chem. Thermodyn., 2008, vol. 40, p. 335.

    CAS  Google Scholar 

  52. Shvareva, T.Y., Fein, J.B., and Navrotsky, A., Ind. Eng. Chem. Res., 2012, vol. 51, p. 605.

    CAS  Google Scholar 

  53. Cevirim-Papaioannou, N., Yalcintas, E., Gaona, X., Altmaier, M., and Geckeis, H., Appl. Geochem., 2018, vol. 98, p. 237.

    CAS  Google Scholar 

  54. Muhr-Ebert, E.L., Wagner, F., and Walther, C., Appl. Geochem., 2019, vol. 100, p. 213.

    Google Scholar 

  55. Plasil, J., Kampf, A.R., Sejkora, J., Cejka, J., Skoda, R., and Tvrdy, J., J. Geosci., 2018, vol. 63, p. 265.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Eremin.

Ethics declarations

The authors state that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eremin, O.V. Method for Calculating Changes in the Standard Gibbs Energies of Formation of Minerals that Belong to the Class of Uranophosphates. Radiochemistry 62, 480–491 (2020). https://doi.org/10.1134/S1066362220040050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362220040050

Keywords:

Navigation