Skip to main content

Advertisement

Log in

Factors Driving Seed Bank Diversity in Wetlands of a Large River Floodplain

  • General Wetland Science
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Soil seed banks serve as reservoirs of taxonomic and genetic diversity and can buffer the effect of perturbations on plant communities, and thus are critical for community resilience. We studied the relationship of seed bank abundance and richness with different hydrological attributes, evaluated beta diversity patterns among wetlands in the Middle Paraná River floodplain, and experimentally explored soil seed bank germination after a drought period. Seed abundance was positively related to drought intensity and, along with richness, negatively related to drought and flood frequency. Turnover and balanced variation in abundance greatly contributed to the total beta diversity probably associated with the environmental heterogeneity of the floodplain; nestedness had a lower contribution probably associated with different dispersal abilities of species. Germination behavior varied between rooted and free-floating plants. In conclusion, the soil seed banks studied are highly variable among habitats; drought and flood frequency, and drought intensity are related with the seed banks abundance and richness; and the germination responses after a drought phase differ among broad ecological groups of wetland plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alahuhta J, Hellsten S, Kuoppala M, Riihimäki J (2018) Regional and local determinants of macrophyte community compositions in high-latitude lakes of Finland. Hydrobiologia 812:99–114

    Google Scholar 

  • Bao F, Pott A, Ferreira FA, Arruda R (2014) Soil seed bank of floodable native and cultivated grassland in the Pantanal wetland: effects of flood gradient, season and species invasion. Brazilian Journal of Biology:1–12. https://doi.org/10.1007/s40415-014-0076-z

  • Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Macroecological Methods 19:134–143

    Google Scholar 

  • Baselga A (2012) The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Global Ecology and Biogeography 21:1223–1232

    Google Scholar 

  • Baselga A (2013) Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients. Methods in Ecology and Evolution 4:552–557. https://doi.org/10.1111/2041-210X.12029

    Article  Google Scholar 

  • Baselga A (2017) Partitioning abundance-based multiple-site dissimilarity into components: balanced variation in abundance and abundance gradients. Methods in Ecology and Evolution 8:799–808

    Google Scholar 

  • Baselga A, Orme CDL, Villéger S, De Bortoli J, Leprieur F (2018) betapart: Partitioning beta diversity into turnover and nestedness components. Rpackage version 1.5.1. http://www.CRAN.R-project.org/package=betapart

  • Baskin CC, Baskin JM (2014a) Seeds: ecology, biogeography and evolution of dormancy and germination, 2nd edn. Academic Press

  • Baskin CC, Baskin JM (2014b) Germination ecology of plants with specialized life cycles and/or habitats. Seeds: Ecology, Biogeography and Evolution of Dormancy and Germination, Second. Elsevier, pp 869–1004

  • Bekker RM, Oomes MJM, Bakker JP (1998) The impact of groundwater level on soil seed bank survival. Seed Science Research 8:399–404

    Google Scholar 

  • Boedeltje G, Bakker JP, Ten Brinke A et al (2004) Dispersal phenology of hydrochorous plants in relation to discharge, seed release time and buoyancy of seeds: the flood pulse concept supported. Journal of Ecology 92:786–796

    Google Scholar 

  • Burkart A (1969) Flora Ilustrada de Entre Ríos (Argentina). Buenos Aires, Argentina

  • Burkart A (1974) Flora Ilustrada de Entre Ríos (Argentina). Buenos Aires, Argentina

  • Burkart A (1979) Flora Ilustrada de Entre Ríos (Argentina). Buenos Aires, Argentina

  • Burkart A (1987) Flora Ilustrada de Entre Ríos (Argentina). Buenos Aires, Argentina

  • Capon SJ (2005) Flood variability and spatial variation in plant community composition and structure on a large arid floodplain. J Arid Environ. Freshwater Biology 60:283–302

  • Casanova MT, Brock MA (2000) How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecology 147:237–250

    Google Scholar 

  • Coops H, van der Velde G (1995) Seed dispersal, germination and seedling growth of six helophyte species in relation to water-level zonation. Freshwater Biology 34:13–20

    Google Scholar 

  • Dalton RL, Carpenter DJ, Boutin C, Allison JE (2017) Factors affecting soil seed banks of riparian communities in an agricultural ecosystem: potential for conservation of native plant diversity. Applied Vegetation Science 20:446–458

    Google Scholar 

  • Devercelli M, Scarabotti P, Mayora G, Schneider B, Giri F (2016) Unravelling the role of determinism and stochasticity in structuring the phytoplanktonic metacommunity of the Paraná River floodplain. Hydrobiologia 764:139–156

    CAS  Google Scholar 

  • Drago EC (1981) Grados de conexión y fases hidrológicas en ambientes leníticos de la llanura aluvial del río Paraná (Argentina). Ecología 6:27–33

    Google Scholar 

  • Drago EC (2007) The physical dynamics of the river-lake floodplain system. In: Iriondo MH, Paggi JC, Parma MJ (eds) Middle Parana River: limnology of a subtropical wetland. Springer-Verlag, Berlin, Germany, pp 83–122

    Google Scholar 

  • Facelli F, Schneider B, Zilli F (2019) Factors driving seed dispersal in a Neotropical river-floodplain system. Acta Botanica Brasilica:1–9. https://doi.org/10.1590/0102-33062019abb0065

  • Galetti M, Donatti CI, Pizo MA, Giacomini HC (2008) Big fish are the best: seed dispersal of Bactris glaucescens by the Pacu fish (Piaractus mesopotamicus) in the Pantanal, Brazil. Biotropica 40:386–389

    Google Scholar 

  • Gaston KJ, Davies RG, Orme CD et al (2007) Spatial turnover in the global avifauna. Proceeding of the Royal Society 274:1567–1574

    Google Scholar 

  • Gordon E (2000) Dinámica de la vegetación y del banco de semillas en un humedal herbáceo lacustrino. Revista de Biología Tropical 48:25–42

    Google Scholar 

  • Gottsberger G (1978) Seed dispersal by fish in the inundated regions of Humaita, Amazonia. Biotropica 10:170–183

    Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist 111:1169–1194

    Google Scholar 

  • Grime JP, Hillier SH (1992) The contribution of seedling regeneration to the structure and dynamics of plant communities and larger units of landscape. In: Fenner M (ed) Seeds: The ecology of regeneration in plant communities. Wallingford, pp 349–364

  • Gross EM (1990) A comparison of methods for estimating seed numbers in the soil. Journal of Ecology 78:1079–1093

    Google Scholar 

  • Gurnell A, Thompson K, Goodson J, Moggridge H (2008) Propagule deposition along river margins: linking hydrology and ecology. Journal of Ecology 96:553–565

    Google Scholar 

  • Haukos DA, Smith LM (2006) Effects of soil water on seed production and photosynthesis of pink smartweed (Polygonum pensylvanicum L.) in playa wetlands. Wetlands 26:265–270

  • He M, Lv L, Li H et al (2016) Analysis on soil seed bank diversity characteristics and its relation with soil physical and chemical properties after substrate addition. PLoS One 11:1–16

    Google Scholar 

  • Hölzel N, Otte A (2001) The impact of flooding regime on the soil seed bank of flood-meadows. Journal of Vegetation Science 12:209–218

    Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, New Yersey

    Google Scholar 

  • Iriondo MH (2007) Geomorphology. In: Iriondo MH, Paggi JC, Parma J (eds) The middle Paraná River. Limnology of a Subtropical Wetland. Springer, Germany, pp 33–52

    Google Scholar 

  • James CS, Capon SJ, White MG, Rayburg SC, Thoms MC (2007) Spatial variability of the soil seed bank in a heterogeneous ephemeral wetland system in semi-arid Australia. Plant Ecology 190:205–217

    Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodpalin systems. Canadian Special Publication of Fisheries and Aquatic Sciences 106:110–127

    Google Scholar 

  • Junk WJ, da Cunha CN, Wantzen KM, Petermann P, Strüssmann C, Marques MI, Adis J (2006) Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil. Aquatic Sciences 68:278–309

    Google Scholar 

  • Kubitzki K, Ziburski A (1994) Seed dispersal inFlood plain forests of Amazonia. Biotropica 26:30–43

    Google Scholar 

  • Lallana VH (1990) Dispersal units in aquatic environments of the middle Parana River and its tributary, the Saladillo River. Proceedings of the 8th international symposium on aquatic weeds. European weed research society, Sweden, pp 13–17

  • Landeiro VL, Magnusson W, Melo AS et al (2011) Spatial eigenfunction analyses in stream networks: do watercourse and overland distances produce different results? Freshwater Biology 56:1184–1192

    Google Scholar 

  • Leck MA, Brock M (2000) Ecological and evolutionary trends in wetlands: evidence from seeds and seed banks in New South Wales, Australia and New Jersey, USA. Plant Species Biology 15:97–112

    Google Scholar 

  • Leck MA, Simpson RL (1995) Ten-year seed bank and vegetation dynamics of a tidal freshwater marsh. American Journal of Botany 82:1547–1557. https://doi.org/10.2307/2446183

    Article  Google Scholar 

  • Levine JM, Murrell DJ (2003) The community-level consequences of seed dispersal patterns. Annual Review of Ecology, Evolution and Systematics 34:549–574

    Google Scholar 

  • Lima GT, Catian G, Luz GP et al (2018) Plântulas e sementes de macróftas aquáticas de lagoas do Pantanal Sul-Mato-Grossense. IHERINGIA, Série Botánica 73:71–87. https://doi.org/10.21826/2446-8231201873201

  • Lopez Peralta AM, Sanchez AM, Luzuriaga AL, Escudero A (2016) Factors driving species assemblage in Mediterranean soil seed banks: from the large to the fine scale. Annals of Botany 117:1221–1228

    Google Scholar 

  • Ma M, Zhou X, Du G (2012) Changes in soil seed bank composition after wetland drying up and soil salinization on the Tibetan plateau. Ecological Enginiering 44:18–26

    Google Scholar 

  • Ma M, Baskin CC, Yu K et al (2017) Wetland drying indirectly influences plant community and seed bank diversity through soil pH. Ecological Indicators 80:186–195

    CAS  Google Scholar 

  • Maia F, Medeiros R, Pillar V, Focht T (2004) Soil seed bank variation patterns according to environmental factors in a natural grassland. Revista Brasileira de Sementes 26:126–137

    Google Scholar 

  • Marchetti ZY, Scarabotti PA (2016) Macrophyte assemblages in relation to environmental, temporal and spatial variations in lakes of a subtropical floodplain-river system, Argentina. Flora 225:82–91

    Google Scholar 

  • Mayora GP, Scarabotti PA, Schneider B, Alvarenga P, Marchese M (2020) Multiscale environmental heterogeneity in a large river-floodplain system. Journal of South American Earth Sciences 100:102546

    Google Scholar 

  • Melo AS, Schneck F, Hepp LU et al (2011) Focusing on variation: methods and applications of the concept of beta diversity in aquatic ecosystems. Acta Limnologica Brasiliensia 23:318–331

    Google Scholar 

  • Middleton BA (2003) Soil seed banks and the potential restoration of forested wetlands after farming. Journal of Applied Ecology 40:1025–1024

    Google Scholar 

  • Moggridge HL, Gurnell AM, Mountford JO (2009) Propagule input, transport and deposition in riparian environments: the importance of connectivity for diversity. Journal of Vegetation Science 20:465–474

    Google Scholar 

  • Myers JA, LaMann JA (2016) The promise and pitfalls of b-diversity in ecology and conservation. Journal of Vegetation Science 27:1081–1083

    Google Scholar 

  • Neé G, Xiang Y, Soppe WJJ (2017) The release of dormancy, a wake-up call for seeds to germinate. Current Opinion in Plant Biology 35:8–14

    PubMed  Google Scholar 

  • Neiff JJ (1979) Fluctuaciones de la vegetación acuática en ambientes del valle de inundación del Paraná medio. Physis 38:43–53

    Google Scholar 

  • Neiff JJ (1986) Aquatic plants of the Paraná River system. In: Davies BR, Walker KF (eds) The ecology river system. Dr. Junk Publishers, The Netherlands, pp 557–571

    Google Scholar 

  • Neiff JJ (1990) Ideas para la interpretación ecológica del Paraná. Interciencia 15:424–441

    Google Scholar 

  • Neiff JJ (2001) Diversity in some tropical wetland systems of South America. Biodiversity in wetlands: assessment. Function and Conservation 2:157–186

    Google Scholar 

  • Neiff JJ, Neiff M (2003) PULSO, software Para análisis de fenómenos recurrentes

  • Neiff JJ, Poi de Neiff A (2002) Connectivity processes as a basis for management of aquatic plants. In: Thomaz SM, Bini LM (eds) Ecologia e Manejo de Macrófitas Aquáticas. Universidade Estadual de Maringá, Maringá, pp 40–58

    Google Scholar 

  • Nekola JC, White PS (1999) The distance decay of similarity in biogeography and ecology. Journal of Biogeography 26:867–878

    Google Scholar 

  • Nilsson C, Brown RL, Jansson R, Merritt DM (2010) The role of hydrochory in structuring riparian and wetland vegetation. Biological Reviews 85:837–858. https://doi.org/10.1111/j.1469-185X.2010.00129.x

    Article  PubMed  Google Scholar 

  • Oliveira PC, Domingues Torezan JM, da Cunha CN (2015) Effects of flooding on the spatial distribution of soil seed and spore banks of native grasslands of the Pantanal wetland. Acta Botanica Brasilica 29:400–407. https://doi.org/10.1590/0102-33062015abb0027

    Article  Google Scholar 

  • Pagotto MA, Silveira RML, Nunes da Cunha C, Fantin-Cruz I (2011) Distribution of herbaceous species in the soil seed bank of a flood seasonality area, northern Pantanal, Brazil. International Review of Hydrobiology 96:149–163

    Google Scholar 

  • Paira AR, Drago EC (2007) Origin, evolution and types of floodplain waterbodies. In: Iriondo M, Paggi JC, Parma MJ (eds) The middle Paraná River. Limnology of a Subtropical Wetland. Springer, Berlin, pp 51–81

    Google Scholar 

  • Pott VJ, Pott A (2000) Plantas aquáticas do Pantanal. Embrapa, Brazil

    Google Scholar 

  • Price JN, Wright BR, Gross CL, Whalley W (2010) Comparison of seedling emergence and seed extraction techniques for estimating the composition of soil seed banks. Methods in Ecology and Evolution 1:151–157

    Google Scholar 

  • Schneider B, Cunha ER, Marchese M, Thomaz SM (2015) Explanatory variables associated with diversity and composition of aquatic macrophytes in a large subtropical river floodplain. Aquatic Botany. 121:67–75. https://doi.org/10.1016/j.aquabot.2014.11.003

    Article  Google Scholar 

  • Schneider B, Cunha ER, Espínola LA, Marchese M, Thomaz SM (2018a) The importance of local environmental, hydrogeomorphological and spatial variables for beta diversity of macrophyte assemblages in a Neotropical floodplain. Journal of Vegetation Science. 30:269–280. https://doi.org/10.1111/jvs.12707

    Article  Google Scholar 

  • Schneider B, Cunha ER, Marchese M, Thomaz SM (2018b) Associations between macrophyte life forms and environmental and morphometric factors in a large sub-tropical floodplain. Frontiers in Plant Science. 9. https://doi.org/10.3389/fpls.2018.00195

  • Schütz W (1997) Primary dormancy and annual dormancy cycles in seeds of six temperate wetland sedges. Aquatic Botany 59:75–85

    Google Scholar 

  • Sculthorpe CD (1967) The biology of aquatic vascular plants. Edward Arnold Ltd, London, Germany

    Google Scholar 

  • Silveira RML, Weiss B (2014) Evidence for herbaceous seed dispersal by small-bodied fishes in a Pantanal seasonal wetland. Brazilian Journal of Biology 74:588–596

    CAS  Google Scholar 

  • Silveira MJ, Chollet S, Thiébaut G, Thomaz SM (2018) Abiotic factors, not herbivorous pressure, are primarily responsible for the performance of an invasive aquatic plant. Annales De Limnologie-International Journal of Limnology 54:12

    Google Scholar 

  • Soininen J (2014) A quantitative analysis of species sorting across organisms and ecosystems. Ecology 95:3284–3292

    Google Scholar 

  • Soininen J, McDonald R, Helmut H (2007) The distance decay of similarity in ecological communities. Ecography 30:3–12

    Google Scholar 

  • Souza EB, Ferreira FA, Pott A (2016) Effects of flooding and its temporal variation on seedling recruitment from the soil seed bank of a Neotropical floodplain. Acta Botanica Brasilica. 30:560–568. https://doi.org/10.1590/0102-33062016abb0202

    Article  Google Scholar 

  • Thomaz SM, Bini LM, Bozelli RL (2007) Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579:1–13. https://doi.org/10.1007/s10750-006-0285-y

    Article  Google Scholar 

  • Tuomisto H, Ruokolainen K, Yli-Halla M (2003) Dispersal, environment, and floristic variation of Western Amazonian forests. Science 299:241–244

    CAS  PubMed  Google Scholar 

  • Waldhoff D, Saint-Paul I, Furch B (1996) Value of fruits and seeds from the floodplain forests of Central Amazonia as food resource for fish. Ecotropica 2:143–156

    Google Scholar 

  • Wetzel RG (2001) Limnology: Lake and river ecosystems. Academic Press, San Diego

    Google Scholar 

  • Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213–251

    Google Scholar 

  • Wright DH, Patterson BD, Mikkelson G et al (1998) A comparative analysis of nested subset patterns of species composition. Oecologia 113:1–20

    Google Scholar 

  • Yule TS, Severo-Neto F, Tinti-Pereira AP (2016) Freshwater sardines of the Pantanal delay seed germination in a floodplain tree species. Wetlands 36:195–199

    Google Scholar 

Download references

Acknowledgements

We are grateful to the Instituto Nacional de Limnología (INALI – UNL – CONICET) for providing physical space to carry out the experimental study, and to the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) for supporting scientific development and providing scholarships. We thank to E. Creus, C. de Bonis and M. Piacenza (INALI – UNL – CONICET) for the field assistance provided.

Funding

This work was supported by the Fondo para la Investigación Científica y Tecnológica (FONCYT, PICT 2012–2095) and by the Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 318–CONICET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florencia Zilli.

Ethics declarations

Declarations of Interest

The authors confirm that the article content has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 72 kb)

ESM 2

(PDF 162 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, B., Zilli, F., Facelli, F. et al. Factors Driving Seed Bank Diversity in Wetlands of a Large River Floodplain. Wetlands 40, 2275–2286 (2020). https://doi.org/10.1007/s13157-020-01355-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-020-01355-9

Keywords

Navigation