Skip to main content
Log in

Determination of notch factors for welded butt joints based on numerical analysis and metamodeling

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

Fatigue evaluation based on the effective notch stress approach requires stress concentration factors for idealized notch geometries. In this paper, stress concentration factors are calculated numerically for different idealizations of the weld geometry. The joints covered here are one-sided Y-butt joints and two-sided DY-butt joints, each with partial and full penetration. The variable parameters of the finite element models are the weld flank angle, the notch radius, the sheet thickness, the ratio of weld seam width to sheet thickness, and the ratio of height of non-fused root face to sheet thickness. Existing estimation formulae for stress concentration factors will be compared with new methods for stress concentration factor estimation: (a) polynomial regression using mixed terms and (b) artificial neural networks. These two methods show similar or superior quality compared with the existing estimations which is expressed through lower estimation errors with respect to the numerically calculated stress concentration factors. The database for the regression analysis using methods (a) and (b) consists of a total of 11,871 design alternatives obtained by finite element analysis. In addition to the improved quality of prognosis, the range of allowable geometrical parameters is significantly increased compared with the existing formulae. The methods (a) and (b) provide a possibility to a fast estimation of stress concentration factors of sufficient quality for a large range of geometrical weld seam parameters. The presented formulae could also be part of a programmed solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. ANSYS Mechanical™ is a trademark of ANSYS, Inc., Canonsburg, PA, USA, see http://www.ansys.com

  2. optiSLang® is a trademark of Dynardo GmbH, Weimar, Germany, see https://www.dynardo.de/software/optislang.hmtl

  3. ∘ indicates the elementwise Hadamard product, ⊘ the elementwise Hadamard division

Abbreviations

ANN [−]:

Artificial neural network

β [°]:

Flank angle

bi [−]:

Bias vectors for artificial neural networks

ck [−]:

Scalar multiplication parameter for the PRC method

d [mm]:

Total model depth

E [MPa]:

Young’s modulus

errrel [%]:

Relative error

F[N] :

Force

f [−]:

Ratio of weld seam width to sheet thickness

fk [−] :

Value of geometric multiplication parameter for the PRC method

g [−] :

Input vector for the ANN method

h [mm] :

Height of non-fused root face

Kf [−] :

Fatigue notch factor

Kt [−] :

Stress concentration factor

Kt, EST [−]:

Stress concentration factor, estimated

Kt, FEM [−]:

Stress concentration factor, calculated by FEM

kt [−] :

Stress concentration output vector of the ANN method

Kt, AKS [−]:

Stress concentration factor of Anthes et al. method

Kt, ANN [−]:

Stress concentration factor of the ANN method

Kt, LER [−] :

Stress concentration factor of Lehrke’s method

Kt, PRC [−] :

Stress concentration factor of the PRC method

Kt, RAI [−] :

Stress concentration factor of Rainer’s method

Kt, YL [−] :

Stress concentration factor of Yung and Lawrence’s method

Kw [−]:

Ratio of notch stress to structural stress

Kw, min [−]:

Minimum ratio of notch stress to structural stress

L [mm]:

Sheet length

M [N/mm] :

Moment

m [−]:

Weld angle exponent in Lehrke’s method

ν [−]:

Poisson ratio

Φi [−]:

Artificial neural network layer potential

PRC [−]:

Polynomial regression with coupling terms

r [mm]:

Notch radius

Sb [MPa]:

Nominal bending stress

St [MPa]:

Nominal tension stress

σe [MPa]:

Notch stress

σw [MPa]:

Structural stress

t [mm]:

Sheet thickness

u [−]:

Weld reinforcement

w [mm]:

Width of weld seam

Wi [−]:

Weight matrices of artificial neural networks

xi,gain [−]:

Gain input vector for artificial neural networks

xi,offset [−]:

Offset input vector for artificial neural networks

yo,gain [−]:

Gain output vector of artificial neural networks

yo,offset [−]:

Offset output vector of artificial neural networks

z [−]:

Ratio of height of non-fused root face to sheet thickness

b, bend:

Bending

t, tens:

Tension

f. p.:

Full penetration

k :

PRC method index

p. p.:

Partial penetration

r, root:

Root

toe:

Toe

Y :

Y-butt joint

DY:

DY-butt joint

References

  1. Hobbacher AF (2016) Recommendations for fatigue design of welded joints and components, 2nd edn. Springer, Cham

    Book  Google Scholar 

  2. Radaj D, Sonsino CM, Fricke W (2006) Fatigue assessment of welded joints by local approaches, 2nd edn. Woodhead Publishing Limited, Cambridge

    Book  Google Scholar 

  3. DVS 0905 Industrielle Anwendung des Kerbspannungskonzeptes für den Ermüdungsfestigkeitsnachweis von Schweißverbindungen. DVS Media GmbH, Feb-2017

  4. Rother K, Rudolph J (2011) Fatigue assessment of welded structures: practical aspects for stress analysis and fatigue assessment. Fatigue Fract Eng Mater Struct 34(3):177–204

    Article  Google Scholar 

  5. Oswald M, Mayr C, Rother K (2019) Determination of notch factors for welded cruciform joints based on numerical analysis and metamodeling. Weld World 63:1339–1354. https://doi.org/10.1007/s40194-019-00751-y

  6. Köttgen VB, Olivier R, Seeger T (1991) IIW XIII-1408-91: Fatigue analysis of welded connections based on local stresses. IIW

  7. Radaj D (1990) Design and analysis of fatigue resistant welded structures. Abington, Cambridge

    Book  Google Scholar 

  8. Neuber H (1968) Über die Berücksichtigung der Spannungskonzentration bei Festigkeitsberechnungen. Konstruktion 20(7):245–251

    Google Scholar 

  9. Lawrence FV, Ho NJ, Mazumdar PK (1981) Predicting the fatigue resistance of welds. Annu Rev Mater Sci 11(1):401–425

    Article  Google Scholar 

  10. Yung J-Y, Lawrence FV Jr (1985) Analytical and graphical aids for the fatigue design of weldments. SAE Trans 94(4):351–366

    Google Scholar 

  11. Rainer G (1978) Errechnen von Spannungen in Schweißverbindungen mit der Methode der Finiten Elemente Dissertation, Technische Hochschule Darmstadt, Darmstadt

  12. Rainer G (1983) Parameterstudien mit finiten Elementen, Berechnung der Bauteilfestigkeit von Schweißverbindungen unter äußeren Beanspruchungen. Konstruktion 37(2):45–52

    Google Scholar 

  13. Anthes RJ, Köttgen VB, Seeger T (1993) Kerbformzahlen von Stumpfstößen und Doppel-T-Stößen. Schweißen Schneid 45:685–688

    CAS  Google Scholar 

  14. Anthes RJ, Köttgen VB, Seeger T (1994) Einfluss der Nahtgeometrie auf die Dauerfestigkeit von Stumpf- und Doppel-T-Stößen. Schweiss Schneid 46(9):433–436

    CAS  Google Scholar 

  15. Lehrke HP (1999) Berechnung von Formzahlen bei Schweißverbindungen. Konstruktion 51(1/2):47–52

    Google Scholar 

  16. Inc. ANSYS ANSYS Homepage [Online]. Verfügbar unter: https://www.ansys.com/. [Accessed: 07-Okt-2019]

  17. Inc. ANSYS, ANSYS Help 18.1. help/ans_elem/Hlp_E_PLANE183.html, 2019

  18. Dynardo G Dynardo optiSLang Homepage [Online]. Verfügbar unter: https://www.dynardo.de/software/optislang.html. [Accessed: 07-Okt-2019]

  19. Hagan MT, Demuth HB, Beale MH, De Jesus O Neural network design, 2nd edn. Amazon Fulfillment Poland Sp. z o.o, Wrocław

  20. Rother K, Fricke W (2016) Effective notch stress approach for welds having low stress concentration. Int J Press Vessels Pip 147:12–20

    Article  CAS  Google Scholar 

Download references

Funding

The IGF project 19450 N of FOSTA - Forschungsvereinigung Stahlanwendung e. V., Düsseldorf, is funded by the Federal Ministry of Economic Affairs and Energy via the AiF within the framework of the program for the promotion of the Industrielle Gemeinschaftsforschung (IGF) based on a resolution of the German Bundestag.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Oswald.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission XIII - Fatigue of Welded Components and Structures

Appendix

Appendix

Table 21 Regression formulae for PRC method for fully penetrated welds, Y-butt joint
Table 22 Regression formulae for PRC method for partially penetrated welds at weld toe, Y-butt joint
Table 23 Regression formulae for PRC method for partially penetrated welds at non-fused root face, Y-butt joint
Table 24 Regression formulae for PRC method for fully penetrated welds, DY-butt joint
Table 25 Regression formulae for PRC method for partially penetrated welds at weld toe, DY-butt joint
Table 26 Regression formulae for PRC method for partially penetrated welds at non-fused root face, DY-butt joint
Table 27 Neural network data for full penetration joints, Y-butt joints
Table 28 Neural network data for partial penetration joints, Y-butt joints
Table 29 Neural network data for full penetration joints, DY-butt joints
Table 30 Neural network data for partial penetration joints, DY-butt joints

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oswald, M., Neuhäusler, J. & Rother, K. Determination of notch factors for welded butt joints based on numerical analysis and metamodeling. Weld World 64, 2053–2074 (2020). https://doi.org/10.1007/s40194-020-00982-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-020-00982-4

Keywords

Navigation