Skip to main content
Log in

The Effect of Potassium on TiO2 Supported Bimetallic Cobalt–Iron Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The effect of potassium addition on Fischer–Tropsch catalysts containing 10 wt% cobalt and 2 wt% iron supported on pure TiO2 was studied using a continuous flow reactor at atmospheric pressure, a syngas feed with H2/CO = 1.7 and GHSVsyngas = 1944 mLsyngas gcat−1 h−1. The FTS reaction was performed in a range of temperature 275–350 °C. Differences in textural, structural, chemical and redox properties of the materials were evaluated by N2 adsorption/desorption isotherms, XRD, XPS, and TPR. As compared to the catalyst without potassium, forming large quantity of methane at each of the three temperatures, the potassium promoted catalysts formed less methane and consistent amount of alcohols. Moreover, the potassium containing samples produced more of the heavier hydrocarbons and more CO2 at the higher temperature as compared to the potassium free sample. According to the structural-activity relationship potassium acted as both, structural and electronic modifier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shafiee S, Topal E (2009) When will fossil fuel reserves be diminished? Energy Policy 37:181–189

    Article  Google Scholar 

  2. Höök M, Tang X (2013) Depletion of fossil fuels and anthropogenic climate change—a review. Energy Policy 52:797–809

    Article  Google Scholar 

  3. Mahmoudi H, Mahmoudi M, Doustdar O, Jahangiri H, Tsolakis A, Gu S, Wyszynski ML (2017) A review of fischer tropsch synthesis process, mechanism, surface chemistry and catalyst formulation. Biofuels Eng 2:11–31

    Article  Google Scholar 

  4. Beyersdorf AJ, Timko MT, Ziemba LD, Bu lzan D, Corporan E, Herndon S C, Howard R, Miake-Lye R L, Thornill K L, Winstead E, Wey C, Yu Z, Anderson B E, (2014) Reduction in aircraft particulate emissions due to the use of Fischer–Tropsch fuels. Atmos Chem Phys 14:11–23

    Article  Google Scholar 

  5. Hu J, Yu F, Lu Y (2012) Application of Fischer–Tropsch synthesis in biomass to liquid conversion. Catalysts 2:303–326

    Article  CAS  Google Scholar 

  6. Jahangirl H, Bennett J, Mahjoubi P, Wilson K, Gu S (2014) A review of advanced catalyst development for Fischer–Tropsch synthesis of hydrocarbon from biomass derived syn-gas. Catal Sci Technol 4:2210

    Article  Google Scholar 

  7. Chen W, Pestman R, Chiang F-K, Hensen EJM (2018) Silver addition to a cobalt Fischer–Tropsch catalyst. J Catal 366:107–114

    Article  CAS  Google Scholar 

  8. Jalama K, Coville NJ, Xiong H, Hildebrandt D, Glasser D, Taylor S, Carley A, Anderson JA, Hutchings GJ (2011) A comparison of Au/Co/Al2O3 and Au/Co/SiO2 catalysts in the Fischer–Tropsch reaction. Appl Catal A 395:1–9

    Article  CAS  Google Scholar 

  9. Davis BH (2007) Fischer–Tropsch synthesis: comparison of performances of iron and cobalt catalysts. Ind Eng Chem Res 46:8938–8945

    Article  CAS  Google Scholar 

  10. Niu L, Liu X, Wen X, Yang Y, Xu J, Li Y (2020) Catalysis today, effect of potassium promoter on phase transformation during H2 pretreatment of a Fe2O3 Fischer–Tropsch synthesis catalyst precursor. Catal Today 343:101–111

    Article  CAS  Google Scholar 

  11. Gavrilovic L, Save J, Blekkan EA (2019) The effect of potassium on cobalt-based Fischer–Tropsch catalysts with different cobalt particle sizes. Catalysts 9:351–359

    Article  CAS  Google Scholar 

  12. Chernavskii PA, Pankina GV, Kazantsev RV, Eliseev OL (2018) Potassium as a structural promoter for an iron/activated carbon catalyst: unusual effect of component deposition order on magnetite particle size and catalytic behavior in Fischer–Tropsch sunthesis. ChemCatChem 10:1313–1320

    Article  CAS  Google Scholar 

  13. Barrios AJ, Gu B, Luo Y, Peron DV, Chernavskii PA, Virginie M, Wojcieszak R, Thybaur JW, Ordomsky VV, Khodakov AY (2020) Identification of efficient promoters and selectivity trends in high temperature Fischer–Tropsch synthesis over supported iron catalysts. Appl Catal B 273:119028

    Article  CAS  Google Scholar 

  14. Russo M, La Parola V, Testa ML, Pantaleo G, Venezia AM, Gupta RK, Bordoloi A, Bal R (2020) Structural insight in TiO2 supported CoFe catalysts for Fischer–Tropsch synthesis at ambient pressure. Appl Catal A 600:117621

    Article  Google Scholar 

  15. ICSD (2014) Inorganic crystal structure database. FIZ-Karlsruhe, Germany

    Google Scholar 

  16. Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous Materials, 2nd edn. Wiley, New York

    Google Scholar 

  17. Gnanamani MK, Rao Pendyala VR, Jacobs G, Sparks DE, Shafer WD, Davis BH (2014) Fischer–Tropsch synthesis: effect of halides and potassium addition on activity and selectivity of cobalt. Catal Lett 144:1127–1133

    Article  CAS  Google Scholar 

  18. Schafer WD, Gnanamani MK, Graham UM, Yang J, Masuku CM, Jacobs G, Davis BH (2019) Fischer–Tropsch: product selectivity-the fingerprint of synthetic fuels. Catalysts 9:259

    Article  Google Scholar 

  19. de Smit E, Weckhuysen BM (2008) The renaissance of iron-based Fischer–Tropsch synthesis: on the multifaceted catalyst deactivation behaviour. Chem Soc Rev 37:2758–2781

    Article  Google Scholar 

  20. Gaube J, Klein H-F (2008) The promoter effect of alkali ions in Fischer–Tropsch iron and cobalt catalysts. Appl Catal A 350:126–132

    Article  CAS  Google Scholar 

  21. Duvenhage DJ, Coville NJ (2005) Effect of K, Mn and Cr on Fischer–Tropsch activity of Fe:Co/TiO2 catalysts. Catal Lett 104:129–133

    Article  CAS  Google Scholar 

  22. Lin Q, Liu B, Jiang F, Fang X, Xu Y, Liu X (2019) Assessing the formation of cobalt carbide and its catalytic performance under realistic reaction conditions and tuning product selectivity in a cobalt-based FTS reaction. Catal Sci Technol 9:3238–3258

    Article  CAS  Google Scholar 

  23. Pereira SC, Ribeiro MF, Bathala N, Pereira MM (2017) Catalys regeneration using CO2 as reactant through reverse-boudouard reaction with coke. Greenhouse Gas Sci Technol 7:843–851

    Article  CAS  Google Scholar 

  24. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouqueroi J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069

    Article  CAS  Google Scholar 

  25. Farias FEM, Rabelo Neto RC, Baldanza MAS, Schmal M, Fernandez FAN (2011) Effect of K promoter on the structure and catalytic behavior of supported iron-based catalysts in Fischer–Tropsch synthesis. Braz J Chem Eng 28:495–504

    Article  CAS  Google Scholar 

  26. Lögdberg S, Tristantini D, Borg Ø, Ilver L, Gevert B, Järas S, Blekkan EA, Holmen A (2009) Hydrocarbon production via Fischer–Tropsch synthesis from H2-poor syngas over different Fe-Co/γ-Al2O3 bimetallic catalysts. Appl Catal B 89:167–182

    Article  Google Scholar 

  27. Tauster SJ, Fung SC, Garten RL (1978) Strong metal-support Interaction. Group 8 noble metal supported on TiO2. J Am Chem Soc 100:170–175

    Article  CAS  Google Scholar 

  28. Feyzi M, Irandoust M, Mirzael AA, Vahid S (2011) Effects of promoters and calcination conditions on the catalytic performance of iron-manganese catalysts for Fischer–Tropsch synthesis. Fuel Process Technol 82:1136–1142

    Article  Google Scholar 

  29. Cornaro U, Rossini S, Montanari T, Finocchio E, Busca G (2012) K-doping of Co/Al2O3 low temperature Fischer–Tropsch catalysts. Catal Today 197:101–108

    Article  CAS  Google Scholar 

  30. Shimura K, Miyazawa T, Hanaoka T, Hirata S (2013) Fischer–tropsch synthesis over TiO2 supported cobalt catalyst: effect of TiO2 crystal phase and metal ion loading. Appl Catal A 460–461:8–14

    Article  Google Scholar 

  31. Cats KH, Weckhuysen BM (2016) Combined operando X-ray diffraction/raman spectroscopy of catalytic solids in the laboratiry: the Co/TiO2 Fischer–Tropsch synthesis catalyst showcase. ChemCatChem 8:1531–1542

    Article  CAS  Google Scholar 

  32. Venezia AM, La Parola V, Liotta LF, Pantaleo G, Lualdi M, Boutonnet M, Jaras S (2012) Co/SiO2 catalysts for Fischer–Tropsch synthesis; effect of Co loading and support modification by TiO2. Catal Today 197:18–23

    Article  CAS  Google Scholar 

  33. Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254:2441–2449

    Article  CAS  Google Scholar 

  34. Pei Y, Ding Y, Zhu H, Zang J, Song X, Don W, Wang T, Yan L, Lu Y (2014) Study on the effect of alkali promoters on the formation of cobalt carbide (Co2C) and on the performance of Co2C via CO hydrogenation reaction. React Kinet Mech Catal 111:505–520

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Executive Programme for Cooperation between Italy and India (Prot. No. MAE01054762017) and P.O. FSE 2014/2020 for post graduate scholarship are kindly acknowledged. The authors also acknowledge Dr. F. Giordano and Dr. N.G. Gallì for performing XRD and physisorption measurements.

Funding

The funding was provided by MATTM (Grant No: MAE01054762018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Valeria La Parola or Anna Maria Venezia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 287 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russo, M., La Parola, V., Pantaleo, G. et al. The Effect of Potassium on TiO2 Supported Bimetallic Cobalt–Iron Catalysts. Top Catal 63, 1424–1433 (2020). https://doi.org/10.1007/s11244-020-01366-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01366-0

Keywords

Navigation