Skip to main content
Log in

Lorentzian Symmetric Spaces Which are Einstein–Yang–Mills with Respect to Invariant Metric Connections

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We classify four-dimensional connected simply-connected Lorentzian symmetric spaces M with connected nontrivial isotropy group furnishing solutions of the Einstein–Yang–Mills equations. Those solutions are built with respect to some invariant metric connection \(\Lambda \) in the bundle of orthonormal frames of M and some diagonal metric on the holonomy algebra corresponding to \(\Lambda \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Binz, E., Śniatycki, J., Fischer, H.R.: Geometry of Classical Fields, North-Holland Mathematics Studies, vol. 154. North-Holland, Dordrecht (1998)

    Google Scholar 

  2. Bleecker, D.: Gauge Theories and Variational Principles. Addison-Wesley, Reading (1981)

    MATH  Google Scholar 

  3. Bourbaki, N.: Groupes et algèbres de Lie, Hermann, Paris, Ch. I (2nd ed.), 1971; Ch. II–III, 1972; Ch. IV–VI, 1968; Ch. VII–VIII (1974)

  4. Calvaruso, G., Fino, A.: Four-dimensional pseudo-Riemannian homogeneous Ricci solitons. Int. J. Geom. Methods Mod. Phys. 12(5), 1550056 (2015)

    Article  MathSciNet  Google Scholar 

  5. Calvaruso, G., Van der Veken, J.: Totally geodesic and parallel hypersurfaces of four-dimensional oscillator groups. Results Math. 64(1–2), 135–153 (2013)

    Article  MathSciNet  Google Scholar 

  6. Durán, R., Gadea, P.M., Oubiña, J.A.: Reductive decompositions and Einstein–Yang–Mills equations associated to the oscillator group. J. Math. Phys. 40(7), 3490–3498 (1999)

    Article  MathSciNet  Google Scholar 

  7. Eguchi, T., Gilkey, P.B., Hanson, A.J.: Gravitation, gauge theories and differential geometry. Phys. Rep. 66(6), 213–393 (1980)

    Article  MathSciNet  Google Scholar 

  8. Figueroa-O’Farrill, J.: Lorentzian symmetric spaces in supergravity. In: Recent Developments in Pseudo-Riemannian Geometry, ESI Lectures in Mathematics and Physics, European Mathematical Society, pp. 419–454. Zurich (2008)

  9. Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, New York (1978)

    MATH  Google Scholar 

  10. Humphreys, J.: Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, vol. 9. Springer, New York (1994)

    Google Scholar 

  11. N. Jacobson, Lie Algebras, Republ. of the: Original, p. 1979. Dover Publications Inc, New York (1962)

    Google Scholar 

  12. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, I, II. Interscience Publishers, New York (1969)

    MATH  Google Scholar 

  13. Komrakov Jr, B.: Four-Dimensional Pseudo-Riemannian Homogeneous Spaces. Classification of Complex Pairs, II, vol. 34. Preprint University of Oslo (1993)

  14. Komrakov, Jr. B.: Four-Dimensional Pseudo-Riemannian Homogeneous Spaces. Classification of Real Pairs, vol. 32. Preprint University of Oslo (1995)

  15. Komrakov Jr., B.: Einstein-Maxwell equation on four-dimensional homogeneous spaces. Lobachevskii J. Math. 8, 33–165 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Komrakov, B., Tchourioumov, A., et al.: Three-dimensional isotropically-faithful homogeneous spaces, vol. 35–37. Preprint University of Oslo (1993)

  17. Levichev, A.V.: Some Symmetric Spaces of the General Theory of Relativity as Solutions of the Einstein–Yang–Mills Equations. Group-Theoretic Methods in Physics, vol. 1 (Y\(\bar{\rm u}\)rmala, 1985), pp. 145–150. Nauka, Moscow (1986) (Russian)

  18. Levichev, A.V.: Pseudo-Hermitian realization of the Minkowski world through DLF theory. Phys. Scr. 83(1), 015101 (2011)

    Article  Google Scholar 

  19. Lie, S.: Theorie der Transformationsgruppen. III. Bestimmung aller Gruppen einer zweifach ausgedehnten Punktmannigfaltigkeit. Arch. for Math., Bd. III, Kristiania, pp. 93–165 (1878)

  20. Mostow, G.D.: The extensibility of local Lie groups of transformations and groups on surfaces. Ann. Math. 2(52), 606–636 (1950)

    Article  MathSciNet  Google Scholar 

  21. Tafel, J.: Some solutions of the Einstein–Yang–Mills equations. In: Geometrical and Topological Methods in Gauge Theories (Proceedings Canadian Mathematical Society Summer Research Institute). McGill University, Montréal (1979). Lecture Notes in Physics, vol. 129, pp. 134–136. Springer, Berlin, p. 134 (1980)

Download references

Acknowledgements

We are grateful to the referee by his/her valuable observations, which have contributed to improve this paper. We are indebted to Professor G. Calvaruso for the initial work we did on the topic and his recent rewarding suggestions, which have contributed to meliorate the manuscript. Our hearty thanks to Professor A. Elduque for his worthful help on several questions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Eugenia Rosado María.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research supported by the Ministerio de Ciencia, Innovación y Universidades, Spain: M.C.L. and E.R.M. under Project No. PGC2018-098321-B-I00; and P.M.G. under the MINECO-FEDER Grant MTM2016-77093-P.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castrillón López, M., Gadea, P.M. & Rosado María, M.E. Lorentzian Symmetric Spaces Which are Einstein–Yang–Mills with Respect to Invariant Metric Connections. Results Math 75, 143 (2020). https://doi.org/10.1007/s00025-020-01259-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-020-01259-4

Keywords

Mathematics Subject Classification

Navigation