Skip to main content
Log in

The Effect of Ti Addition on Microstructure and Magnetic Properties of Nanocrystalline FeAl40 Alloy Powders Prepared by Mechanical Alloying

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Recent research on nanocrystalline FeAl alloys has shown that these alloys are of high importance due to their promising structural and mechanical properties, particularly magnetic behavior. This work aims at studying the synthesis, structural and magnetic characterization of nanocrystalline FeAl alloy powders, prepared by a mechanical alloying process (MA), as well as the effect of Ti addition on the magnetic properties of a compound. The powder morphology, phase transformation, crystallite size, micro-stress evolution, and magnetic properties were investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM), and vibrating samples magnetometer (VSM). It has been found that at the final stage of mechanical alloying the bcc-disordered FeAl phase and nanocrystalline Fe(Al, Ti) solid solution occurred for the FeAl40 and FeAl40Ti3 alloys, respectively. The milling time and the addition of titanium affect the powder morphology and decrease the size of the particles. The average crystallites size of 17.2 and 11.2 nm was reached at the end of 30 h of milling, and the lattice strain increased up to 0.3 and 0.21% for the FeAl40 and FeAl40Ti3 alloys, respectively. Also, the magnetic properties attributed to microstructural changes were investigated. It has been established that the change in magnetic behavior occurs mainly due to the formation of a supersaturated Fe(Al, Ti) solid solution. Magnetic properties of the samples are highly influenced by the addition of the Ti element into FeAl40 alloy, as well. The magnetism of the FeAl40Ti3 compound is reported to be higher than that of FeAl40.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. M. Krifa, M. Mhadhbi, L. Escoda, J. Saurina, J.J. Sunol, N. Llorca-Isern, C. Artieda-Guzmán, and M. Khitouni “Phase transformations during mechanical alloying of Fe–30% Al–20% Cu,” Powder Techn., 246, 117–124 (2013).

    CAS  Google Scholar 

  2. H. Ahmadian Baghbaderani, S. Sharafi, and M. Delshad Chermahini, “Investigation of nanostructure formation mechanism and magnetic properties in Fe45Co45Ni10 system synthesized by mechanical alloying,” Powder Techn., 230, 241–246 (2012).

    CAS  Google Scholar 

  3. A.R. Othman, A. Sardarinejad, and A.K. Masrom, “Effect of milling parameters on mechanical alloying of aluminum powders,” Int. J. Adv. Manuf. Technol., 76, 1319–1332 (2015).

    Google Scholar 

  4. S.M. Zhu, M. Tamura, K. Sakamoto, and K. Iwasaki, “Characterization of Fe3Al-based intermetallic alloys fabricated by mechanical alloying and HIP consolidation,” Mater. Sci. Eng. A., 292, 83–89 (2000).

    Google Scholar 

  5. J. Chao, D.-G. Morris, M.-A. Munoz-Morris, and J.-L. Gonzalez Carrasco, “The influence of some microstructural and test parameters on the tensile behaviour and the ductility of a mechanically-alloyed Fe– 40Al alloy,” Intermetallics, 9, 299–308 (2001).

    CAS  Google Scholar 

  6. K.-H. Sim, G. Wang, R.-C. Son, and S.-L. Choe, “Influence of mechanical alloying on the microstructure and mechanical properties of powder metallurgy Ti2AlNb-based alloy,” Powder Techn., 317, 133–141 (2017).

    CAS  Google Scholar 

  7. P.A. Loginov, E.A. Levashov, V.V. Kurbatkina, A.A. Zaitsev, and D.A. Sidorenko “Evolution of the microstructure of Cu–Fe–Co–Ni powder mixtures upon mechanical alloying,” Powder Techn., 276, 166–174 (2015).

    CAS  Google Scholar 

  8. K. Kato and T. Masui, “Influence of boron addition on the tensile properties of sintered FeAl compacts by powder injection molding,” J. Jpn. Soc. Powder Powder Metall., 49, No. 9, 787–792 (2002).

    CAS  Google Scholar 

  9. M. Krasnowski and T. Kulik , “Nanocrystalline FeAl intermetallic produced by mechanical alloying followed by hot-pressing consolidation,” Intermetallics, 15, 201–205 (2007).

    CAS  Google Scholar 

  10. P. Haušild, J. Siegl, P. Málek, and V. Šíma, “Effect of C, Ti, Zr, and B alloying on fracture mechanisms in hot-rolled Fe–40 (at.%) Al,” Intermetallics, 17, 680–687 (2009).

    Google Scholar 

  11. S. Izadia, G.H. Akbaria, and K. Janghorbanb “Sintering and mechanical properties of mechanically alloyed Fe–Al–(B) nanostructures,” J. Alloys Compd., 496, 699–702 (2010).

    Google Scholar 

  12. D.D. Risanti and G. Sauthoff, “Microstructures and mechanical properties of Fe–Al–Ta alloys with strengthening Laves phase,” Intermetallics, 19, 1727–1736 (2011).

    CAS  Google Scholar 

  13. C. Suryanarayana, “Mechanical alloying and milling,” Prog. Mater. Sci., 46, 181–184 (2001).

    Google Scholar 

  14. G.M. Mendiratta, S.K. Ehlers, D.M. Dimiduk, W.R. Kerr, S. Mazdiyasni, and H.A. Lipsitt, Mat. Res. Soc. Symp. Proc., 81, 393–404 (1987).

    CAS  Google Scholar 

  15. M. Salazar, A. ALbiter, G. Rosas, and R. Perez, “Structural and mechanical properties of the AlFe intermetallic alloy with Li, Ce, and Ni additions,” Mater. Sci. Eng.: A., 351, 154–159 (2003).

    Google Scholar 

  16. L. Falat, A. Schneider, G. Sauthoff, and G. Frommeyer, “Mechanical properties of Fe–Al–M–C (M = Ti, V, Nb, Ta) alloys with strengthening carbides and Laves phase,” Intermetallics, 13, 1256–1262 (2005).

    CAS  Google Scholar 

  17. X. Lia, P. Prokopcáková, and M. Palma, “Microstructure and mechanical properties of Fe–Al–Ti–B alloys with additions of Mo and W,” Mater. Sci. Eng.: A, 611, 234–241 (2014).

    Google Scholar 

  18. Nguyen Thi Hoang Oanh, Nguyen Hoang Viet, Dina V. Dudina, Alberto Moreira Jorge Jr, and Ji-Soon Kim, “Structural characterization and magnetic properties of Al82Fe16TM2 (TM: Ti, Ni, Cu) alloys prepared by mechanical alloying,” J. Non-Crystal. Sol., 468, 67–73 (2017).

    Google Scholar 

  19. A. Younes, N. Dilmi, M. Khorchef, A. Bouamer, N-E. Bacha, and M. Zergoug, “Structural and magnetic properties of FeCuNi nanostructured produced by mechanical alloying,” Appl. Surf. Sci. 446, 258–265 (2018).

    CAS  Google Scholar 

  20. N.E. Fenineche, R. Hamzaoui, and O. El Kedim, “Structure and magnetic properties of nanocrystalline Co–Ni and Co–Fe mechanically alloyed,” Mater. Lett., 57, 4165–4169 (2003).

    CAS  Google Scholar 

  21. C. Senderowski, D. Zasada, T. Durejko, and Z. Bojar, “Characterization of as-synthesized and mechanically milled Fe–Al powders produced by the self-disintegration method,” Powder Techn., 263, 96– 103 (2014).

    CAS  Google Scholar 

  22. A.R. Stokes and A.C.J.Wilson, “The diffraction of X-rays by distorted crystal aggregates,” Proc. Phys. Soc. Lond., 56, 174–181 (1944).

    CAS  Google Scholar 

  23. A. Younes, N-E. Bacha, M. Zergoug, and N. Dilmi, “Structural and magnetic properties of Fe–Co/Al2O3 nanocomposite powder produced by mechanical alloying,” Powder Metall. Met. Ceram., 56, No. 3–4, 148– 157 (2017).

    CAS  Google Scholar 

  24. S.M. Zhu and K. Iwasaki , “Characterization of mechanically alloyed ternary Fe–Ti–Al powders,” Mater. Sci. Eng.: A, 270, 170 (1999).

    Google Scholar 

  25. W. Maziarz, J. Dutkiewicz, J. Van Humbeeck, and T. Czeppe, “Processing of nanocrystalline FeAlX (X = Ni, Mn) intermetallics using a mechanical alloying and hot pressing techniques,” J. Mater. Sci., 39, 5425 (2004).

    CAS  Google Scholar 

  26. H.J. Fecht, G. Han, Z. Fu, and W.L. Johnson “Metastable phase formation in the Zr–Al binary system induced by mechanical alloying,” J. Appl. Phys., 67, No. 15, 1744–1748 (1990).

    CAS  Google Scholar 

  27. Run-hua Fan, Jia-tao Sun, Hong-yu Gong, Kang-ning Sun, and Wei-min Wang, “Structural evolution of mechanically alloyed nanocrystalline Fe–28Al powders,” Powder Techn., 149, 121–126 (2005).

    CAS  Google Scholar 

  28. M. Mhadhbi, M. Khitouni, M. Azabou, and A. Kolsi, “Characterization of Al and Fe nanosized powders synthesized by high energy mechanical milling,” Mater. Charact., 59, 944–950 (2008).

    CAS  Google Scholar 

  29. M.M. Rajath Hegde and A.O. Surendranathan, “Phase transformation, structural evolution and mechanical property of nanostructured FeAl as a result of mechanical alloying,” Russian J. Non-Ferrous Metals, 50, 474–484 (2009).

    Google Scholar 

  30. R. Bernal-Correa, A. Rosales-Rivera, P. Pineda-Gómez, and N.A. Salazar, “Structural and magnetic properties of Fe60Al40 alloys prepared by means of a magnetic mill,” J. Alloys Compd., 495, 491 (2010).

    CAS  Google Scholar 

  31. Y. Jiraskova, J. Bursik, O. Zivotsky, and J. Cuda “Influence of Fe2O3 on alloying and magnetic properties of Fe–Al. Mater. Sci. Eng. B,” 186, 73–78 (2014).

    CAS  Google Scholar 

  32. M.H. Enayati and M. Salehi, “Formation mechanism of Fe3Al and FeAl intermetallic compounds during mechanical alloying,” J. Mater. Sci.,” 40, 3933–3938 (2005).

    CAS  Google Scholar 

  33. S. Haixia, W. Yunxin, T. Chuan’an, Y. Shuai, and G. Qianming, “Microstructure and mechanical properties of FeAl intermetallics prepared by mechanical alloying and hot-pressing,” Tsinghua Sci. Techn., 14, 300–306 (2009).

    Google Scholar 

  34. Z. Hamlati, A. Guittoum, S. Bergheul, N. Souami, K. Taibi, and M. Azzaz, “X-Ray diffraction, microstructure, and mo¨ssbauer studies of Fe72Al28 alloy elaborated by mechanical milling,” J. Mater. Eng. Perform., 21, 1943–1948 (2012).

    CAS  Google Scholar 

  35. I. Chicinas, V. Pop, and O. Isnard, “Synthesis of the super alloy powders by mechanical alloying,” J. Mater. Sci., 39, 5305–5309 (2004).

    CAS  Google Scholar 

  36. R. Bernal-Correa, A. Rosales-Rivera, P. Pineda-Gómez, and N.A. Salazar, “Structural and magnetic properties of Fe60Al40 alloys prepared by means of a magnetic mill,” J. Alloys Compd., 495, 491–494 (2010).

    CAS  Google Scholar 

  37. X. Amils, J. Nogués, S. Suriñach, M.D. Barò, M.A. Muñoz-Morris, and D.G. Morris, “Hardening and softening of FeAl during milling and annealing,” Intermetallics, 8, No. 7, 805–813 (2000).

    CAS  Google Scholar 

  38. R. Fan, J. Sun, H. Gong, K. Sun, and W. Wang “Structural evolution of mechanically alloyed nanocrystalline Fe–28Al powders,” Powder Techn., 149, 121–126 (2005).

    CAS  Google Scholar 

  39. L.E. Zamora, G.A. Pérez Alcázar, G.Y. Vélez, J.D. Betancur, J.F. Marco, J.J. Romero, A. Martínez, F.J. Palomares, and J.M. González, “Disorder effect on the magnetic behavior of mechanically alloyed Fe1–xAlx (0.2 ≤ x ≤ 0.4),” Phys. Rev. B., 79, 094418 (2009).

    Google Scholar 

  40. C. Suryanarayana, E. Ivanov, and V.V. Boldyrev, “The science and technology of mechanical alloying. Mater. Sci. Eng. A,” 304–306, 151–158 (2001).

    Google Scholar 

  41. A. Younes, M. Khorchef, A. Bouamer, and H. Amar, “Magnetic and structural Behavior of Fe–CoO nanocomposites mechanically milled,” Mater. Sci. Eng., 557, 1–12 (2019).

    Google Scholar 

  42. S. Enzo, R. Frattini, R. Gupta, P.P. Macri, G. Principi, L. Schiffini, and G. Scipione, “X-ray powder diffraction and Mössbauer study of nanocrystalline Fe–Al prepared by mechanical alloying,” Acta Mater., 44, 3105–3113 (1996).

    CAS  Google Scholar 

  43. J.A. Plascak, E. Zamora Ligia, and G.A. Pérez Alcazar, “Ising model for disordered ferromagnetic Fe−Al alloys,” Phys. Rev. B,” 61, 3188 (2000).

    CAS  Google Scholar 

  44. K.H.J. Buschow and F.R. de Boer, Physics of Magnetism and Magnetic Materials, Springer, Boston, MA, (2003).

    Google Scholar 

  45. E.C. Stoner and E.P. Wohlfarth, “A mechanism of magnetic hysteresis in heterogeneous alloys,” IEEE Trans. Magnet., 27, 3475–3518 (1991).

    CAS  Google Scholar 

  46. G. Herzer, “Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets,” IEEE Trans. Magnet., 26, 1397–1402 (1990).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr.A. Guittoum (Nuclear Research Centre, Algiers, Algeria) for assistance in X-ray patterns analysis by the High Score Plus software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Metidji.

Additional information

Published in Poroshkova Metallurgiya, Vol. 59, Nos. 3–4 (532), pp. 55–68, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metidji, N., Bacha, N.E., Younes, A. et al. The Effect of Ti Addition on Microstructure and Magnetic Properties of Nanocrystalline FeAl40 Alloy Powders Prepared by Mechanical Alloying. Powder Metall Met Ceram 59, 160–170 (2020). https://doi.org/10.1007/s11106-020-00148-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-020-00148-3

Keywords

Navigation