Skip to main content

Advertisement

Log in

Enhanced multi-source data analysis for personalized sleep-wake pattern recognition and sleep parameter extraction

  • Original Article
  • Published:
Personal and Ubiquitous Computing Aims and scope Submit manuscript

Abstract

Sleep behavior is traditionally monitored with polysomnography, and sleep stage patterns are a key marker for sleep quality used to detect anomalies and diagnose diseases. With the growing demand for personalized healthcare and the prevalence of the Internet of Things, there is a trend to use everyday technologies for sleep behavior analysis at home, having the potential to eliminate expensive in-hospital monitoring. In this paper, we conceived a multi-source data mining approach to personalized sleep-wake pattern recognition which uses physiological data and personal information to facilitate fine-grained detection. Physiological data includes actigraphy and heart rate variability and personal data makes use of gender, health status, and race information which are known influence factors. Moreover, we developed a personalized sleep parameter extraction technique fused with the sleep-wake approach, achieving personalized instead of static thresholds for decision-making. Results show that the proposed approach improves the accuracy of sleep and wake stage recognition, therefore offering a new solution for personalized sleep-based health monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. American Academy of S. M. (2007) The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications. American Academy of Sleep Med

  2. Bhatia VN Survey of nearest neighbor techniques. ArXiv (2010). arXiv:1007.0085

  3. Bild DE, Bluemke DA, Burke GL, Detrano R, Diez Roux AV, Folsom AR, Greenland P, Jacobs DR Jr, Kronmal R, Liu K, Nelson JC, O’Leary D, Saad MF, Shea S, Szklo M (2002) Multi-ethnic study of atherosclerosis:, objectives and design. Am J Epidemiol 156(9):871–881. https://doi.org/10.1093/aje/kwf113

    Article  PubMed  Google Scholar 

  4. Breiman L (2001) Random forests. Mach Learn 45(1):5–32. https://doi.org/10.1023/a:1010933404324

    Article  Google Scholar 

  5. Chung KY, Song K, Shin K, Sohn J, Cho SH, Chang JH (2017) Noncontact sleep study by multi-modal sensor fusion. Sensors 17(7):1–17. https://doi.org/10.3390/s17071685

    Article  Google Scholar 

  6. Crivello A, Barsocchi P, Girolami M, Palumbo F (2019) The meaning of sleep quality: a survey of available technologies. IEEE Access 7:167374–167390. https://doi.org/10.1109/ACCESS.2019.2953835

    Article  Google Scholar 

  7. Dafna E, Tarasiuk A, Zigel Y (2018) Sleep staging using nocturnal sound analysis. Sci Rep 8

  8. Fallmann S, Chen L (2018) Detecting chronic diseases from sleep-wake behaviour and clinical features. In: Proceedings of the IEEE 5th International Conference on Systems and Informatics, pp 1076–1084, https://doi.org/10.1109/ICSAI.2018.8599388, (to appear in print)

  9. Fallmann S, Chen L (2019) Computational sleep behavior analysis: A survey. IEEE Access 7 142421–142440

  10. Fallmann S, Chen L, Chen F (2019) Fine-grained sleep-wake behaviour analysis. In: Proceedings of the IEEE smartworld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI, pp 667–674, https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00150, (to appear in print)

  11. Figueiro M, Sahin L, Roohan C, Kalsher M, Plitnick B, Rea M (2019) Effects of red light on sleep inertia. Nature and Science of Sleep 11:45–57. https://doi.org/10.2147/NSS.S195563

    Article  PubMed  PubMed Central  Google Scholar 

  12. Han J, Kamber M, Pei J (2011) Data mining: concepts and techniques, 3rd edn. Morgan Kaufmann, San Francisco

    Google Scholar 

  13. Ibȧṅez V., Silva J, Cauli O (2018) A survey on sleep questionnaires and diaries. Sleep Med 42:90–96. https://doi.org/10.1016/j.sleep.2017.08.026

    Article  PubMed  Google Scholar 

  14. Johnson D, Jackson C, Williams N, Alcántara C. (2019) Are sleep patterns influenced by race/ethnicity – a marker of relative advantage or disadvantage? evidence to date. Nature and Science of Sleep 11:79–95. https://doi.org/10.2147/NSS.S169312

    Article  PubMed  PubMed Central  Google Scholar 

  15. Khademi A, El-Manzalawy Y, Buxton OM, Honavar V (2018) Toward personalized sleep-wake prediction from actigraphy. In: Proceedings IEEE-EMBS International Conference on Biomedical and Health Informatics, pp 414–417, https://doi.org/10.1109/BHI.2018.8333456, (to appear in print)

  16. Koushik A, Amores J, Maes P (2018) Real-time sleep staging using deep learning on a smartphone for a wearable EEG. arXiv:1811.10111

  17. Kuo CE, Liu YC, Chang DW, Young CP, Shaw FZ, Liang SF (2017) Development and evaluation of a wearable device for sleep quality assessment. IEEE Trans Biomed Eng 64(7):1547–1557. https://doi.org/10.1109/TBME.2016.2612938

    Article  PubMed  Google Scholar 

  18. Liao WH, Yang CM (2008) Video-based activity and movement pattern analysis in overnight sleep studies. In: Proceedngs of the 19th International Conference on Pattern Recognition, pp 1–4, https://doi.org/10.1109/ICPR.2008.4761635, (to appear in print)

  19. Malafeev A, Laptev D, Bauer S, Omlin X, Wierzbicka A, Wichniak A, Jernajczyk W, Riener R, Buhmann J, Achermann P (2018) Automatic human sleep stage scoring using deep neural networks. Front Neurosci 12(November):1–15. https://doi.org/10.3389/fnins.2018.00781

    Article  Google Scholar 

  20. Marcos JV, Hornero R, Álvarez D., del Campo F, Zamarrón C., López M. (2008) Utility of multilayer perceptron neural network classifiers in the diagnosis of the obstructive sleep apnoea syndrome from nocturnal oximetry. Comput Methods Prog Biomed 92(1):79–89. https://doi.org/10.1016/j.cmpb.2008.05.006

    Article  Google Scholar 

  21. McDowell A, Donnelly MP, Nugent CD, Galway L, McGrath MJ (2013) Addressing the challenges of sleep/wake class imbalance in bed based non-contact actigraphic recordings of sleep. In: Conference proceedings - IEEE engineering in medicine and biology society, pp 4654–4657, https://doi.org/10.1109/EMBC.2013.6610585, (to appear in print)

  22. Meltzer LJ, Walsh CM, Peightal AA (2015) Comparison of actigraphy immobility rules with polysomnographic sleep onset latency in children and adolescents. Sleep and Breathing 19:1415–1423. https://doi.org/10.1007/s11325-015-1138-6

    Article  PubMed  Google Scholar 

  23. Meltzer LJ, Westin AM (2011) A comparison of actigraphy scoring rules used in pediatric research. Sleep Med 12(8):793–796. https://doi.org/10.1016/j.sleep.2011.03.011

    Article  PubMed  PubMed Central  Google Scholar 

  24. Middelkoop HAM, Smilde-van den Doel DA, Neven AK, Kamphuisen HAC, Springer CP (1996) Subjective sleep characteristics of 1,485 males and females aged 50-93:, effects of sex and age, and factors related to self-evaluated quality of sleep. J Gerontol A Biol Sci Med Sci 51:108–15. https://doi.org/10.1093/gerona/51a.3.m108

    Article  Google Scholar 

  25. National Sleep Research Resource: Multi-Ethnic Study of Atherosclerosis, HRV Analysis Overview. https://sleepdata.org/datasets/mesa/pages/hrv-analysis.md. Accessed: 2019-03-11

  26. Newell J, Mairesse O, Verbanck P, Neu D (2012) Is a one-night stay in the lab really enough to conclude? First-night effect and night-to-night variability in polysomnographic recordings among different clinical population samples. Psychiatry Res 200(2):795–801. https://doi.org/10.1016/j.psychres.2012.07.045

    Article  PubMed  Google Scholar 

  27. Parro V, Valdo L (2018) Sleep-wake detection using recurrence quantification analysis. Chaos 28(8):085706. https://doi.org/10.1063/1.5024692

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Pinheiro N, Couceiro R, Henriques J, Muehlsteff J, Quintal I (2016) Goncalveş, L., Carvalho, P.: Can PPG be used for HRV analysis?. In: Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp 2945–2949, https://doi.org/10.1109/EMBC.2016.7591347, (to appear in print)

  29. Rao S, Ali AE, Cesar P (2019) Deepsleep: A ballistocardiographic deep learning approach for classifying sleep stages. In: Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers, UbiComp/ISWC ’19 Adjunct. https://doi.org/10.1145/3X00000.341162.3343758, pp 187–190

  30. Rechtschaffen A, Kales A (1968) A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Nat Inst of Health Publication 204:976–977

    Google Scholar 

  31. Renevey P, Delgado-Gonzalo R, Lemkaddem A, Proença M., Lemay M, Solà J., Tarniceriu A, Bertschi M (2017) Optical wrist-worn device for sleep monitoring. In: Proceedings of the EMBEC and NBC, pp 615–618. https://doi.org/10.1007/978-981-10-5122-7_154

  32. Rusterholz T, Tarokh L, Van Dongen HPA, Achermann P (2017) Interindividual differences in the dynamics of the homeostatic process are trait-like and distinct for sleep versus wakefulness. J Sleep Res 26(2):171–178. https://doi.org/10.1111/jsr.12483

    Article  PubMed  Google Scholar 

  33. Shim J, Kang SW (2017) Behavioral factors related to sleep quality and duration in adults. Journal of lifestyle medicine 7(1):18–26. https://doi.org/10.15280/jlm.2017.7.1.18

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tao S, Cui L, Zhang GQ, Mobley D, Kim M, Rueschman M, Mueller R, Mariani S, Redline S (2018) The National Sleep Research resource: towards a sleep data commons. J Am Med Inform Assoc 25(10):1351–1358. https://doi.org/10.1093/jamia/ocy064

    Article  PubMed  PubMed Central  Google Scholar 

  35. Task Force of the European Society of Cardiology the North American Society of P. E. (1996) Heart rate variability. Circulation 93(5):1043–1065. https://doi.org/10.1161/01.CIR.93.5.1043

    Article  Google Scholar 

  36. Uċar M. K., Bozkurt MR, Bilgin C, Polat K (2018) Automatic sleep staging in obstructive sleep apnea patients using photoplethysmography, heart rate variability signal and machine learning techniques. Neural Comput Appl 29(8):1–16. https://doi.org/10.1007/s00521-016-2365-x

    Article  Google Scholar 

  37. Wolz R, Munro J, Guerrero R, Hill DL, Dauvilliers Y (2017) Predicting Sleep/Wake patterns from 3-Axis accelerometry using deep learning. Alzheimers Dement 13(7):1012. https://doi.org/10.1016/j.jalz.2017.06.1412

    Article  Google Scholar 

  38. Zhang X, Kou W, Chang EIC, Gao H, Fan Y, Xu Y (2018) Sleep stage classification based on multi-level feature learning and recurrent neural networks via wearable device. Comput Biol Med 103:71–81. https://doi.org/10.1016/j.compbiomed.2018.10.010

    Article  PubMed  Google Scholar 

  39. Zhao M, Yue S, Katabi D, Jaakkola TS, Bianchi MT (2017) Learning sleep stages from radio signals: a conditional adversarial architecture. In: Proceedings of the 34th international conference on machine learning, vol 70, pp 4100–4109

Download references

Funding

This work was supported by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 676157.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Fallmann.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fallmann, S., Chen, L. & Chen, F. Enhanced multi-source data analysis for personalized sleep-wake pattern recognition and sleep parameter extraction. Pers Ubiquit Comput 28, 363–383 (2024). https://doi.org/10.1007/s00779-020-01445-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00779-020-01445-9

Navigation