Skip to main content
Log in

Vortex soliton solutions of a (3 + 1)-dimensional Gross–Pitaevskii equation with partially nonlocal distributed coefficients under a linear potential

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A (3 + 1)-dimensional Gross–Pitaevskii equation with partially nonlocal distributed coefficients under a linear potential is followed with interest. The mapping procedure from the distributed-coefficient to the constant-coefficient equations is provided. Via the procedure with solution of constant-coefficient NLSE from the variational principle, an approximate vortex soliton solution is reported. With the increase of value for topological charge m, torus-shaped vortex soliton turns into ring vortex soliton, and central region of ring gradually enlarges. The layer of vortex solitons and their phase along the z-direction is related to the number of \(q+1\) with the Hermite parameter q. The branch number of spiral phase structures for vortex solitons is related to the value of topological charge m. The stability test from the direct numerical simulation indicates that vortex solitons with \(m=1,2,3,\, q=0\) are stable, otherwise, vortex solitons with other values of m, q are unstable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wu, H.Y., Jiang, L.H.: Instruction on the construction of coherent structures based on variable separation solutions of (2+1)-dimensional nonlinear evolution equations in fluid mechanics. Nonlinear Dyn. 97, 403–412 (2019)

    MATH  Google Scholar 

  2. Dai, C.Q., Fan, Y., Zhang, N.: Re-observation on localized waves constructed by variable separation solutions of (1+1)-dimensional coupled integrable dispersionless equations via the projective Riccati equation method. Appl. Math. Lett. 96, 20–26 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Al-Zhour, Z., Al-Mutairi, N., Alrawajeh, F., Alkhasawneh, R.: Series solutions for the Laguerre and Lane-Emden fractional differential equations in the sense of conformable fractional derivative. Alex. Eng. J. 58, 1413–1420 (2019)

    Google Scholar 

  4. Xu, L., Wen, X.Y., Jiang, Y.L., Wang, D.S.: Exotic localized vector waves in a two-component nonlinear wave system. J. Nonlinear Sci. 30, 537–564 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Zhang, B., Zhang, X.L., Dai, C.Q.: Discussions on localized structures based on equivalent solution with different forms of breaking soliton model. Nonlinear Dyn. 87, 2385–2393 (2017)

    MathSciNet  Google Scholar 

  6. Zou, L., Yu, Z.B., Tian, S.F., Wang, X.B., Li, J.: Lie point symmetries, conservation laws, and analytical solutions of a generalized timefractional Sawada-Kotera equation. Waves Random Complex Media. 29, 509–522 (2019)

    MathSciNet  Google Scholar 

  7. Wang, D.S., Shi, Y.R., Feng, W.X., Wen, L.: Dynamical and energetic instabilities of F = 2 spinor Bose–Einstein condensates in an optical lattice. Physica D 351–352, 30–41 (2017)

    MathSciNet  Google Scholar 

  8. Chen, Y.X., Xu, F.Q., Hu, Y.L.: Excitation control for three-dimensional Peregrine solution and combined breather of a partially nonlocal variable-coefficient nonlinear Schrödinger equation. Nonlinear Dyn. 95, 1957–1964 (2019)

    MATH  Google Scholar 

  9. Dai, C.Q., Wang, Y.Y., Fan, Y., Yu, D.G.: Reconstruction of stability for Gaussian spatial solitons in quintic-septimal nonlinear materials under PT-symmetric potentials. Nonlinear Dyn. 92, 1351–1358 (2018)

    Google Scholar 

  10. Dai, C.Q., Fan, Y., Wang, Y.Y.: Three-dimensional optical solitons formed by the balance between different-order nonlinearities and high-order dispersion/diffraction in parity-time symmetric potentials. Nonlinear Dyn. 98, 489–499 (2019)

    MATH  Google Scholar 

  11. Dai, C.Q., Zhang, J.F.: Controlling effect of vector and scalar crossed double-Ma breathers in a partially nonlocal nonlinear medium with a linear potential. Nonlinear Dyn. 100, 1621–1628 (2020)

    Google Scholar 

  12. Wu, G.Z., Dai, C.Q.: Nonautonomous soliton solutions of variable-coefficient fractional nonlinear Schrodinger equation. Appl. Math. Lett. 106, 106365 (2020)

    MathSciNet  MATH  Google Scholar 

  13. Dai, C.Q., Zhou, G.Q., Chen, R.P., Lai, X.J., Zheng, J.: Vector multipole and vortex solitons in two-dimensional Kerr media. Nonlinear Dyn. 88, 2629–2635 (2017)

    MathSciNet  Google Scholar 

  14. Kong, L.Q., Liu, J., Jin, D.Q., Ding, D.J., Dai, C.Q.: Soliton dynamics in the three-spine \(\alpha \)-helical protein with inhomogeneous effect. Nonlinear Dyn. 87, 83–92 (2017)

    Google Scholar 

  15. Wang, Y.Y., Dai, C.Q., Xu, Y.Q., Zheng, J., Fan, Y.: Dynamics of nonlocal and localized spatiotemporal solitons for a partially nonlocal nonlinear Schrodinger equation. Nonlinear Dyn. 92, 1261–1269 (2018)

    Google Scholar 

  16. Dai, C.Q., Chen, R.P., Wang, Y.Y., Fan, Y.: Dynamics of light bullets in inhomogeneous cubic-quintic-septimal nonlinear media with PT-symmetric potentials. Nonlinear Dyn. 87, 1675–1683 (2017)

    Google Scholar 

  17. Wu, H.Y., Jiang, L.H.: Vector Hermite-Gaussian spatial solitons in (2+1)-dimensional strongly nonlocal nonlinear media. Nonlinear Dyn. 83, 713–718 (2016)

    MathSciNet  Google Scholar 

  18. Dai, C.Q., Wang, Y.Y.: Spatiotemporal localizations in (3 + 1)-dimensional PT-symmetric and strongly nonlocal nonlinear media. Nonlinear Dyn. 83, 2453–2459 (2016)

    MathSciNet  Google Scholar 

  19. Zhong, W.P., Xie, R.H., Belic, M., Petrovic, N., Chen, G., Yi, L.: Exact spatial soliton solutions of the two-dimensional generalized nonlinear Schrodinger equation with distributed coefficients. Phys. Rev. A 78, 023821 (2008)

    Google Scholar 

  20. Dai, C.Q., Fan, Y., Zhou, G.Q., Zheng, J., Chen, L.: Vector spatiotemporal localized structures in (3 + 1)-dimensional strongly nonlocal nonlinear media. Nonlinear Dyn. 86, 999–1005 (2016)

    MathSciNet  Google Scholar 

  21. Maruno, K., Ohta, Y.: Localized solitons of a (2 +1)-dimensional nonlocal nonlinear Schrödinger equation. Phys. Lett. A 372, 4446–4450 (2008)

    MATH  Google Scholar 

  22. Yan, Z.Y.: Rogon-like solutions excited in the two-dimensional nonlocal nonlinear Schrödinger equation. J. Math. Anal. Appl. 380, 689–696 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Dai, C.Q., Liu, J., Fan, Y., Yu, D.G.: Two-dimensional localized Peregrine solution and breather excited in a variable-coefficient nonlinear Schrödinger equation with partial nonlocality. Nonlinear Dyn. 88, 1373–1383 (2017)

    Google Scholar 

  24. Wu, H.Y., Jiang, L.H.: Excitation management of (2+1)-dimensional breathers for a coupled partially nonlocal nonlinear Schrodinger equation with variable coefficients. Nonlinear Dyn. 95, 3401–3409 (2019)

    MATH  Google Scholar 

  25. Dai, C.Q., Wang, Y., Liu, J.: Spatiotemporal Hermite-Gaussian solitons of a (3 + 1)-dimensional partially nonlocal nonlinear Schrodinger equation. Nonlinear Dyn. 84, 1157–1161 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Liu, Q.: Analytical matter wave solutions of a (2+1)-dimensional partially nonlocal distributed-coefficient Gross–Pitaevskii equation with a linear potential. Optik 200, 163434 (2020)

    Google Scholar 

  27. Lopez-Aguayo, S., Gutierrez-Vega, J.C.: Elliptically modulated self-trapped singular beams in nonlocal nonlinear media: ellipticons. Opt. Express 15, 18326–18338 (2007)

    Google Scholar 

  28. Chen, Y.X.: Excitation manipulation of three-dimensional completely localized rogue waves in a partially nonlocal and inhomogeneous nonlinear medium. Nonlinear Dyn. 97, 177–184 (2019)

    MATH  Google Scholar 

  29. Luo, Z., Li, Y., Pang, W., Liu, Y.: Dipolar matter-wave soliton in one-dimensional optical lattice with tunable local and nonlocal nonlinearities. J. Phys. Soc. Jpn. 82, 094401 (2013)

    Google Scholar 

  30. Sarkar, S., Bhattacharyay, A.: Non-local interactions in a BEC: an analogue gravity perspective. J. Phys. A Math. Theor. 47, 092002 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Caplan, R.M., Hoq, Q.E., Carretero-Gonzalez, R., Kevrekidis, P.G.: Azimuthal modulational instability of vortices in the nonlinear Schrodinger equation. Opt. Commun. 282, 1399–1405 (2009)

    Google Scholar 

  32. Dai, C.Q., Wang, X.G., Zhou, G.Q.: Stable light-bullet solutions in the harmonic and parity-time-symmetric potentials. Phys. Rev. A 89, 013834 (2014)

    Google Scholar 

  33. Serkin, V.N., Belyaeva, T.L., Alexandrov, I.V., Melchor, G.M.: Novel topological quasi-soliton solutions for the nonlinear cubic-quintic Schrodinger equation model. Proc. SPIE 4271, 292–302 (2001)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11775104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Yu Wu.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Ethical approval

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, HY., Jiang, LH. Vortex soliton solutions of a (3 + 1)-dimensional Gross–Pitaevskii equation with partially nonlocal distributed coefficients under a linear potential. Nonlinear Dyn 101, 2441–2448 (2020). https://doi.org/10.1007/s11071-020-05916-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05916-9

Keywords

Navigation