Skip to main content
Log in

A combination of hierarchical pore and buffering layer construction for ultrastable nanocluster Si/SiOx anode

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Porous Si can be synthesized from diverse silica (SiO2) via magnesiothermic reduction technology and widely employed as potential anode material in lithium ion batteries. However, concerns regarding the influence of residual silicon oxide (SiOx) component on resulted Si anode after reduction are still lacked. In this work, we intentionally fabricate a cauliflower-like silicon/silicon oxide (CF-Si/SiOx) particles from highly porous SiO2 spheres through insufficient magnesiothermic reduction, where residual SiOx component and internal space play an important role in preventing the structural deformation of secondary bulk and restraining the expansion of Si phase. Moreover, the hierarchically structured CF-Si/SiOx exhibits uniformly-dispersed channels, which can improve ion transport and accommodate large volume expansion, simultaneously. As a result, the CF-Si/SiOx-700 anode shows excellent electrochemical performance with a specific capacity of ~1,400 mA·h·g−1 and a capacity retention of 98% after 100 cycles at the current of 0.2 A·g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    CAS  Google Scholar 

  2. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    CAS  Google Scholar 

  3. An, W. L.; Gao, B.; Mei, S. X.; Xiang, B.; Fu, J. J.; Wang, L.; Zhang, Q. B.; Chu, P. K.; Huo, K. F. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nat. Commun. 2019, 10, 1447.

    Google Scholar 

  4. McDowell, M. T.; Lee, S. W.; Harris, J. T.; Korgel, B. A.; Wang, C. M.; Nix, W. D.; Cui, Y. In situ tem of two-phase lithiation of amorphous silicon nanospheres. Nano Lett. 2013, 13, 758–764.

    CAS  Google Scholar 

  5. Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 2012, 6, 1522–1531.

    CAS  Google Scholar 

  6. Kim, H.; Seo, M.; Park, M. H.; Cho, J. A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chem., Int. Ed. 2010, 49, 2146–2149.

    CAS  Google Scholar 

  7. Ren, Y. P.; Zhou, X. Y.; Tang, J. J.; Ding, J.; Chen, S.; Zhang, J. M.; Hu, T. J.; Yang, X. S.; Wang, X. M.; Yang, J. Boron-doped spherical hollow-porous silicon local lattice expansion toward a highperformance lithium-ion-battery anode. Inorg. Chem. 2019, 58, 4592–4599.

    CAS  Google Scholar 

  8. Shivaraju, G. C.; Sudakar, C.; Prakash, A. S. High-rate and long-cycle life performance of nano-porous nano-silicon derived from mesoporous MCM-41 as an anode for lithium-ion battery. Electrochim. Acta 2019, 294, 357–364.

    CAS  Google Scholar 

  9. Liang, G. M.; Qin, X. Y.; Zou, J. S.; Luo, L. Y.; Wang, Y. Z.; Wu, M. Y.; Zhu, H.; Chen, G. H.; Kang, F. Y.; Li, B. H. Electrosprayed silicon-embedded porous carbon microspheres as lithium-ion battery anodes with exceptional rate capacities. Carbon 2018, 127, 424–431.

    CAS  Google Scholar 

  10. Wu, J. X.; Qin, X. Y.; Miao, C.; He, Y. B.; Liang, G. M.; Zhou, D.; Liu, M.; Han, C. P.; Li, B. H.; Kang, F. Y. A honeycomb-cobweb inspired hierarchical core-shell structure design for electrospun silicon/carbon fibers as lithium-ion battery anodes. Carbon 2016, 98, 582–591.

    CAS  Google Scholar 

  11. Yun, Q. B.; Qin, X. Y.; Lv, W.; He, Y. B.; Li, B. H.; Kang, F. Y.; Yang, Q. H. “Concrete” inspired construction of a silicon/carbon hybrid electrode for high performance lithium ion battery. Carbon 2015, 93, 59–67.

    CAS  Google Scholar 

  12. Wu, J. X.; Qin, X. Y.; Zhang, H. R.; He, Y. B.; Li, B. H.; Ke, L.; Lv, W.; Du, H. D.; Yang, Q. H.; Kang, F. Y. Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode. Carbon 2015, 84, 434–443.

    CAS  Google Scholar 

  13. Zhang, H. R.; Qin, X. Y.; Wu, J. X.; He, Y. B.; Du, H. D.; Li, B. H.; Kang, F. Y. Electrospun core-shell silicon/carbon fibers with an internal honeycomb-like conductive carbon framework as an anode for lithium ion batteries. J. Mater. Chem. A 2015, 3, 7112–7120.

    CAS  Google Scholar 

  14. Zhang, R. Y.; Du, Y. J.; Li, D.; Shen, D. K.; Yang, J. P.; Guo, Z. P.; Liu, H. K.; Elzatahry, A. A.; Zhao, D. Y. Highly reversible and large lithium storage in mesoporous Si/C nanocomposite anodes with silicon nanoparticles embedded in a carbon framework. Adv. Mater. 2014, 26, 6749–6755.

    CAS  Google Scholar 

  15. Entwistle, J.; Rennie, A.; Patwardhan, S. A review of magnesiothermic reduction of silica to porous silicon for lithium-ion battery applications and beyond. J. Mater. Chem. A 2018, 6, 18344–18356.

    CAS  Google Scholar 

  16. Kim, B.; Ahn, J.; Oh, Y.; Tan, J. W.; Lee, D.; Lee, J. K.; Moon, J. Highly porous carbon-coated silicon nanoparticles with canyon-like surfaces as a high-performance anode material for Li-ion batteries. J. Mater. Chem. A 2018, 6, 3028–3037.

    CAS  Google Scholar 

  17. Xu, Z. L.; Gang, Y.; Garakani, M. A.; Abouali, S.; Huang, J. Q.; Kim, J. K. Carbon-coated mesoporous silicon microsphere anodes with greatly reduced volume expansion. J. Mater. Chem. A 2016, 4, 6098–6106.

    CAS  Google Scholar 

  18. Chun, J.; An, S.; Lee, J. Highly mesoporous silicon derived from waste iron slag for high performance lithium ion battery anodes. J. Mater. Chem. A 2015, 3, 21899–21906.

    CAS  Google Scholar 

  19. Jia, H. P.; Zheng, J. M.; Song, J. H.; Luo, L. L.; Yi, R.; Estevez, L.; Zhao, W. G.; Patel, R.; Li, X. L.; Zhang, J. G. A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries. Nano Energy 2018, 50, 589–597.

    CAS  Google Scholar 

  20. Li, Y. Z.; Yan, K.; Lee, H. W.; Lu, Z. D.; Liu, N.; Cui, Y. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 2016, 1, 15029.

    CAS  Google Scholar 

  21. Jia, H. P.; Zheng, J. M.; Song, J. H.; Luo, L. L.; Yi, R.; Estevez, L.; Zhao, W. G.; Patel, R.; Li, X. L.; Zhang, J. G. A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries. Nano Energy 2018, 50, 589–597.

    CAS  Google Scholar 

  22. Xu, Q.; Li, J. Y.; Sun, J. K.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Adv. Energy Mater. 2017, 7, 1601481

    Google Scholar 

  23. Bang, B. M.; Lee, J. I.; Kim, H.; Cho, J.; Park, S. High-performance macroporous bulk silicon anodes synthesized by template-free chemical etching. Adv. Energy Mater. 2012, 2, 878–883.

    CAS  Google Scholar 

  24. Wada, T.; Ichitsubo, T.; Yubuta, K.; Segawa, H.; Yoshida, H.; Kato, H. Bulk-nanoporous-silicon negative electrode with extremely high cyclability for lithium-ion batteries prepared using a top-down process. Nano Lett. 2014, 14, 4505–4510.

    CAS  Google Scholar 

  25. Li, X. L.; Gu, M.; Hu, S. Y.; Kennard, R.; Yan, P. F.; Chen, X. L.; Wang, C. M.; Sailor, M. J.; Zhang, J. G.; Liu, J. Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat. Commun. 2014, 5, 4105.

    CAS  Google Scholar 

  26. Ngo, D. T.; Le, H. T. T.; Pham, X. M.; Jung, J. W.; Vu, N. H.; Fisher, J. G.; Im, W. B.; Kim, I. D.; Park, C. J. Highly porous coral-like silicon particles synthesized by an ultra-simple thermal-reduction method. J. Mater. Chem. A 2018, 6, 2834–2846.

    CAS  Google Scholar 

  27. An, Y. L.; Fei, H. F.; Zeng, G. F.; Ci, L. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Green, scalable, and controllable fabrication of nanoporous silicon from commercial alloy precursors for high-energy lithium-ion batteries. ACS Nano 2018, 12, 4993–5002.

    CAS  Google Scholar 

  28. Xiao, Q. F.; Gu, M.; Yang, H.; Li, B.; Zhang, C. M.; Liu, Y.; Liu, F.; Dai, F.; Yang, L.; Liu, Z. Y. et al. Inward lithium-ion breathing of hierarchically porous silicon anodes. Nat. Commun. 2015, 6, 8844.

    CAS  Google Scholar 

  29. Zuo, X. X.; Xia, Y. G.; Ji, Q.; Gao, X.; Yin, S. S.; Wang, M. M.; Wang, X. Y.; Qiu, B.; Wei, A. X.; Sun, Z. C. et al. Self-templating construction of 3D hierarchical macro-/mesoporous silicon from 0D silica nanoparticles. ACS Nano 2017, 11, 889–899.

    CAS  Google Scholar 

  30. Son, Y.; Ma, J. Y.; Kim, N.; Lee, T.; Lee, Y.; Sung, J.; Choi, S. H.; Nam, G.; Cho, H.; Yoo, Y. et al. Quantification of pseudocapacitive contribution in nanocage-shaped silicon-carbon composite anode. Adv. Energy Mater. 2019, 9, 1803480.

    Google Scholar 

  31. Wang, J. Y.; Liao, L.; Lee, H. R.; Shi, F. F.; Huang, W.; Zhao, J.; Pei, A.; Tang, J.; Zheng, X. L.; Chen, W. et al. Surface-engineered mesoporous silicon microparticles as high-Coulombic-efficiency anodes for lithium-ion batteries. Nano Energy 2019, 61, 404–410.

    CAS  Google Scholar 

  32. Wang, J. Y.; Liao, L.; Li, Y. Z.; Zhao, J.; Shi, F. F.; Yan, K.; Pei, A.; Chen, G. X.; Li, G. D.; Lu, Z. Y. et al. Shell-protective secondary silicon nanostructures as pressure-resistant high-volumetric-capacity anodes for lithium-ion batteries. Nano Lett. 2018, 18, 7060–7065.

    CAS  Google Scholar 

  33. Yang, J. P.; Wang, Y. X.; Li, W.; Wang, L. J.; Fan, Y. C.; Jiang, W.; Luo, W.; Wang, Y.; Kong, B.; Selomulya, C. et al. Amorphous TiO2 shells: A vital elastic buffering layer on silicon nanoparticles for highperformance and safe lithium storage. Adv. Mater. 2017, 29, 1700523.

    Google Scholar 

  34. Lee, S. J.; Kim, H. J.; Hwang, T. H.; Choi, S.; Park, S. H.; Deniz, E.; Jung, D. S.; Choi, J. W. Delicate structural control of Si-SiOx-C composite via high-speed spray pyrolysis for Li-ion battery anodes. Nano Lett. 2017, 17, 1870–1876.

    CAS  Google Scholar 

  35. Hu, Y. S.; Demir-Cakan, R.; Titirici, M. M.; Müeller, J. O.; Schlöegl, R.; Antonietti, M.; Maier, J. Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. Angew. Chem., Int. Ed. 2008, 47, 1645–1649.

    CAS  Google Scholar 

  36. Benítez, A.; Di Lecce, D.; Elia, G. A.; Caballero, Á.; Morales, J.; Hassoun, J. A lithium-ion battery using a 3 D-array nanostructured graphene-sulfur cathode and a silicon oxide-based anode. ChemSusChem 2018, 11, 1512–1520.

    Google Scholar 

  37. Elia, G. A.; Hassoun, J. A SiOx-based anode in a high-voltage lithium-ion battery. ChemElectroChem 2017, 4, 2164–2168.

    CAS  Google Scholar 

  38. Arrebola, J. C.; Caballero, A.; Gómez-Cámer, J. L.; Hernán, L.; Morales, J.; Sánchez, L. Combining 5 V LiNi0.5Mn1.5O4 spinel and Si nanoparticles for advanced Li-ion batteries. Electrochem. Commun. 2009, 11, 1061–1064.

    CAS  Google Scholar 

  39. Yin, J. T.; Wada, M.; Yamamoto, K.; Kitano, Y.; Tanase, S.; Sakai, T. Micrometer-scale amorphous Si thin-film electrodes fabricated by electron-beam deposition for Li-ion batteries. J. Electrochem. Soc. 2006, 153, A472–A477.

    CAS  Google Scholar 

  40. Lee, K. L.; Jung, J. Y.; Lee, S. W.; Moon, H. S.; Park, J. W. Electrochemical characteristics and cycle performance of LiMn2O4/a-Si microbattery. J. Power Sources 2004, 130, 241–246.

    CAS  Google Scholar 

  41. Wang, J. Y.; Huang, W.; Kim, Y. S.; Jeong, Y. K.; Kim, S. C.; Heo, J.; Lee, H. K.; Liu, B. F.; Nah, J.; Cui, Y. Scalable synthesis of nanoporous silicon microparticles for highly cyclable lithium-ion batteries. Nano Res. 2020, 4, 1558–1563.

    Google Scholar 

  42. Wu, W.; Wang, M.; Wang, R.; Xu, D. W.; Zeng, H. B.; Wang, C. Y.; Cao, Y. L.; Deng, Y. H. Magnesio-mechanochemical reduced SiOx for high-performance lithium ion batteries. J. Power Sources 2018, 407, 112–122.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 51872157), Shenzhen Technical Plan Project (Nos. JCYJ20170817161753629 and JCYJ20180508152135822), the Shenzhen Graphene Manufacturing Innovation Center (No. 201901161513), Shenzhen Key Lab of Security Research of Power Batteries (No. ZDSYS201707271615073), Guangdong Technical Plan Project (Nos. 2015TX01N011 and 2017B090907005), Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (No. 2017BT01N111), and the Special Fund Project for Strategic Emerging Industry Development of Shenzhen (No. 20170428145209110).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianying Qin, Baohua Li or Feiyu Kang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, K., Li, T., Qin, X. et al. A combination of hierarchical pore and buffering layer construction for ultrastable nanocluster Si/SiOx anode. Nano Res. 13, 2987–2993 (2020). https://doi.org/10.1007/s12274-020-2962-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2962-y

Keywords

Navigation