Skip to main content
Log in

Roles of N-methyl-d-aspartate receptors and d-amino acids in cancer cell viability

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

N-methyl-d-aspartate (NMDA) receptors, which are widely present in the central nervous system, have also been found to be up-regulated in a variety of cancer cells and tumors and they can play active roles in cancer cell growth regulation. NMDA receptor antagonists have been found to affect cancer cell viability and interfere with tumor growth. Moreover, cancer cells also have been shown to have elevated levels of some d-amino acids. Two human skin cell lines: Hs 895.T skin cancer and Hs 895.Sk skin normal cells were investigated. They were derived from the same patient to provide tumor and normal counterparts for comparative studies. The expression of specific NMDA receptors was confirmed for the first time in both skin cell lines. Dizocilpine (MK-801) and memantine, NMDA receptor channel blockers, were found to inhibit the growth of human skin cells by reducing or stopping NMDA receptor activity. Addition of d-Ser, d-Ala, or d-Asp, however, significantly reversed the antiproliferative effect on the human skin cells triggered by MK-801 or memantine. Even more interesting was the finding that the specific intracellular composition of a few relatively uncommon amino acids was selectively elevated in skin cancer cells when exposed to MK-801. It appears that a few specific and upregulated d-amino acids can reverse the drug-induced antiproliferative effect in skin cancer cells via the reactivation of NMDA receptors. This study provides a possible innovative anticancer therapy by acting on the d-amino acid pathway in cancer cells either blocking or activating their regulatory enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used for the current study are available from the corresponding author on reasonable request.

Abbreviations

NMDA receptors:

N-methyl-d-aspartate receptors

MK-801:

Dizocilpine

CNS:

Central nervous system

DAAO:

d-amino acid oxidase

AD:

Alzheimer’s disease

AQC:

6-Aminoquinolyl-N-hydroxysuccinimide carbamate

HPLC–MS:

High performance liquid chromatography-mass spectrometry

BCA:

Bicinchoninic acid

DMEM:

Dulbecco’s Modified Eagle Medium

qRT-PCR:

Quantitative real-time polymerase chain reaction

PVDF:

Polyvinylidene fluoride

FBS:

Fetal bovine serum

ERK:

Extracellular signal-regulated kinase

SEM:

Standard error of mean

Akt:

Protein kinase B

PCNA:

Proliferating cell nuclear antigen

Aurora B:

Aurora B kinase

P450:

Cytochrome P450

References

  1. Zhu S, Stein RA, Yoshioka C, Lee CH, Goehring A, Mchaourab HS, Gouaux E (2016) Mechanism of NMDA receptor inhibition and activation. Cell 165:704–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Watkins JC (1981) Pharmacology of excitatory amino acid transmitters. Adv Biochem Psychopharmacol 29:205–212

    CAS  PubMed  Google Scholar 

  3. Hogan-Cann AD, Anderson CM (2016) Physiological roles of non-neuronal NMDA receptors. Trends Pharmacol Sci 37:750–767

    Article  CAS  PubMed  Google Scholar 

  4. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14:383–400

    Article  CAS  PubMed  Google Scholar 

  6. Cull-Candy SG, Leszkiewicz DN (2004) Role of distinct NMDA receptor subtypes at central synapses. Science's STKE 2004:re16

    Article  PubMed  Google Scholar 

  7. Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325:529–531

    Article  CAS  PubMed  Google Scholar 

  8. Kleckner NW, Dingledine R (1988) Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 241:835–837

    Article  CAS  PubMed  Google Scholar 

  9. Hashimoto A, Oka T, Nishikawa T (1995) Extracellular concentration of endogenous free D-serine in the rat brain as revealed by in vivo microdialysis. Neuroscience 66:635–643

    Article  CAS  PubMed  Google Scholar 

  10. Wolosker H, Blackshaw S, Snyder SH (1999) Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. Proc Natl Acad Sci USA 96:13409–13414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wolosker H, Sheth KN, Takahashi M, Mothet JP, Brady RO Jr, Ferris CD, Snyder SH (1999) Purification of serine racemase: biosynthesis of the neuromodulator D-serine. Proc Natl Acad Sci USA 96:721–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Matsui T, Sekiguchi M, Hashimoto A, Tomita U, Nishikawa T, Wada K (1995) Functional comparison of D-serine and glycine in rodents: the effect on cloned NMDA receptors and the extracellular concentration. J Neurochem 65:454–458

    Article  CAS  PubMed  Google Scholar 

  13. Schell MJ, Brady RO Jr, Molliver ME, Snyder SH (1997) D-serine as a neuromodulator: regional and developmental localizations in rat brain glia resemble NMDA receptors. J Neurosci 17:1604–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mothet JP, Parent AT, Wolosker H, Brady RO Jr, Linden DJ, Ferris CD, Rogawski MA, Snyder SH (2000) D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci USA 97:4926–4931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McBain CJ, Kleckner NW, Wyrick S, Dingledine R (1989) Structural requirements for activation of the glycine coagonist site of N-methyl-D-aspartate receptors expressed in Xenopus oocytes. Mol Pharmacol 36:556–565

    CAS  PubMed  Google Scholar 

  16. D’Aniello A, Fiore MMD, Fisher GH, Milone A, Seleni A, D’Aniello S, Perna AF, Ingrosso D (2000) Occurrence of D-aspartic acid and N-methyl-D-aspartic acid in rat neuroendocrine tissues and their role in the modulation of luteinizing hormone and growth hormone release. FASEB J 14:699–714

    Article  PubMed  Google Scholar 

  17. Erreger K, Geballe MT, Kristensen A, Chen PE, Hansen KB, Lee CJ, Yuan H, Le P, Lyuboslavsky PN, Micale N, Jorgensen L, Clausen RP, Wyllie DJA, Snyder JP, Traynelis SF (2007) Subunit-specific agonist activity at NR2A-, NR2B-, NR2C-, and NR2D-containing N-methyl-D-aspartate glutamate receptors. Mol Pharmacol 72:907–920

    Article  CAS  PubMed  Google Scholar 

  18. Kim PM, Duan X, Huang AS, Liu CY, Ming GL, Song H, Snyder SH (2010) Aspartate racemase, generating neuronal D-aspartate, regulates adult neurogenesis. Proc Natl Acad Sci USA 107:3175–3179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Malinow R (2012) New developments on the role of NMDA receptors in Alzheimer's disease. Curr Opin Neurobiol 22:559–563

    Article  CAS  PubMed  Google Scholar 

  20. Heng MY, Detloff PJ, Wang PL, Tsien JZ, Albin RL (2009) In vivo evidence for NMDA receptor-mediated excitotoxicity in a murine genetic model of Huntington disease. J Neurosci 29:3200–3205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Milnerwood AJ, Gladding CM, Pouladi MA, Kaufman AM, Hines RM, Boyd JD, Ko RW, Vasuta OC, Graham RK, Hayden MR, Murphy TH, Raymond LA (2010) Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington's disease mice. Neuron 65:178–190

    Article  CAS  PubMed  Google Scholar 

  22. Balu DT (2016) The NMDA receptor and schizophrenia: from pathophysiology to treatment. Adv Pharmacol 76:351–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stepulak A, Luksch H, Gebhardt C, Uckermann O, Marzahn J, Sifringer M, Rzeski W, Staufner C, Brocke KS, Turski L, Ikonomidou C (2009) Expression of glutamate receptor subunits in human cancers. Histochem Cell Biol 132:435–445

    Article  CAS  PubMed  Google Scholar 

  24. Deutsch SI, Tang AH, Burket JA, Benson AD (2014) NMDA receptors on the surface of cancer cells: target for chemotherapy? Biomed Pharmacother 68:493–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stepulak A, Rola R, Polberg K, Ikonomidou C (2014) Glutamate and its receptors in cancer. J Neural Transm 121:933–944

    Article  CAS  PubMed  Google Scholar 

  26. Abdul M, Hoosein N (2005) N-methyl-D-aspartate receptor in human prostate cancer. J Membr Biol 205:125–128

    Article  CAS  PubMed  Google Scholar 

  27. Genever PG, Maxfield SJ, Kennovin GD, Maltman J, Bowgen CJ, Raxworthy MJ, Skerry TM (1999) Evidence for a novel glutamate-mediated signaling pathway in keratinocytes. J Investig Dermatol 112:337–342

    Article  CAS  PubMed  Google Scholar 

  28. Nahm WK, Philpot BD, Adams MM, Badiavas EV, Zhou LH, Butmarc J, Bear MF, Falanga V (2004) Significance of N-methyl-d-aspartate (NMDA) receptor-mediated signaling in human keratinocytes. J Cell Physiol 200:309–317

    Article  CAS  PubMed  Google Scholar 

  29. North WG, Gao G, Memoli V, Pang RHL, Lynch L (2010) Breast cancer expresses functional NMDA receptors. Breast Cancer Res Treat 122:307–314

    Article  CAS  PubMed  Google Scholar 

  30. North WG, Liu F, Lin LZ, Tian R, Akerman B (2017) NMDA receptors are important regulators of pancreatic cancer and are potential targets for treatment. Clin Pharmacol 9:79–86

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Du S, Wang Y, Alatrash N, Weatherly CA, Roy D, MacDonnell FM, Armstrong DW (2019) Altered profiles and metabolism of L-and D-amino acids in cultured human breast cancer cells vs. non-tumorigenic human breast epithelial cells. J Pharm Biomed Anal 164:421–429

    Article  CAS  PubMed  Google Scholar 

  32. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Du S, Wang Y, Weatherly CA, Holden K, Armstrong DW (2018) Variations of L-and D-amino acid levels in the brain of wild-type and mutant mice lacking D-amino acid oxidase activity. Anal Bioanal Chem 410:2971–2979

    Article  CAS  PubMed  Google Scholar 

  34. Pawlowska M, Chen S, Armstrong DW (1993) Enantiomeric separation of fluorescent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, tagged amino acids. J Chromatogr A 641:257–265

    Article  CAS  Google Scholar 

  35. Patel DC, Breitbach ZS, Yu J, Nguyen KA, Armstrong DW (2017) Quinine bonded to superficially porous particles for high-efficiency and ultrafast liquid and supercritical fluid chromatography. Anal Chim Acta 963:164–174

    Article  CAS  PubMed  Google Scholar 

  36. Armstrong DW, Liu Y, Ekborgott KH (1995) A covalently bonded teicoplanin chiral stationary phase for HPLC enantioseparations. Chirality 7:474–497

    Article  CAS  Google Scholar 

  37. Ahmed SA, Gogal RM Jr, Walsh JE (1994) A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H] thymidine incorporation assay. J Immunol Methods 170:211–224

    Article  CAS  PubMed  Google Scholar 

  38. Cull-Candy S, Brickley S, Farrant M (2001) NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11:327–335

    Article  CAS  PubMed  Google Scholar 

  39. Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12:529–540

    Article  CAS  PubMed  Google Scholar 

  40. Sheng M, Cummings J, Roldan LA, Jan YN, Jan LY (1994) Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368:144–147

    Article  CAS  PubMed  Google Scholar 

  41. Rzeski W, Turski L, Ikonomidou C (2001) Glutamate antagonists limit tumor growth. Proc Natl Acad Sci USA 98:6372–6377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Duan W, Hu J, Liu Y (2019) Ketamine inhibits colorectal cancer cells malignant potential via blockage of NMDA receptor. Exp Mol Pathol 107:171–178

    Article  CAS  PubMed  Google Scholar 

  43. Stepulak A, Sifringer M, Rzeski W, Endesfelder S, Gratopp A, Pohl EE, Bittigau P, Felderhoff-Mueser U, Kaindl AM, Bührer C, Hansen HH, Stryjecka-Zimmer M, Turski L, Ikonomidou C (2005) NMDA antagonist inhibits the extracellular signal-regulated kinase pathway and suppresses cancer growth. Proc Natl Acad Sci USA 102:15605–15610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Santillo A, Falvo S, Chieffi P, Burrone L, Baccari GC, Longobardi S, Di Fiore MM (2014) D-aspartate affects NMDA receptor-extracellular signal–regulated kinase pathway and upregulates androgen receptor expression in the rat testis. Theriogenology 81:744–751

    Article  CAS  PubMed  Google Scholar 

  45. Santillo A, Falvo S, Chieffi P, Di Fiore MM, Senese R, Chieffi BG (2016) D-Aspartate induces proliferative pathways in spermatogonial GC-1 cells. J Cell Phsiol 231:490–495

    Article  CAS  Google Scholar 

  46. McKay S, Bengtson CP, Bading H, Wyllie DJ, Hardingham GE (2013) Recovery of NMDA receptor currents from MK-801 blockade is accelerated by Mg2+ and memantine under conditions of agonist exposure. Neuropharmacology 74:119–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

AZYP, LLC, is acknowledged for assistance and technical support for HPLC chiral column technology. We would also like to thank the Shimadzu Center for Advanced Analytical Chemistry for the use of the Shimadzu instrument (LCMS-8040).

Funding

This work was supported by the Robert A. Welch Foundation (Y0026) for DWA and (Y-1933–20170325) for FMM.

Author information

Authors and Affiliations

Authors

Contributions

DWA devised this project. SD, YS, MW, YW, and DWA designed the experiments, analyzed the data, and performed most of the experiments. NA and MW contributed to the cell culture and cell viability study. SD, MW, AB, and DWA contributed to the writing of the manuscript. All authors discussed the results and reviewed the manuscript.

Corresponding author

Correspondence to Daniel W. Armstrong.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Informed consent

All authors give consent for publication of the manuscript in Molecular Biology Reports.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2020_5733_MOESM1_ESM.pdf

Supplementary file3 (PDF 74 kb). Fig. S1. HPLC-MS/MS chromatograms of the separation of D- and L-amino acids. Peak identities for the separation of Leu, Ile, and Hyp: 1. D-allo-Ile, 2. D-Leu, 3. trans-L-Hyp, 4.cis- L-Hyp, 5.cis- D-Hyp, 6. L-leu, 7. L-Ile, 8. L-allo-Ile. Peak identities for the separation of Val and Nva: 1. D-Nva, 2. D-Val, 3. L-Nva, 4. L-Val

11033_2020_5733_MOESM2_ESM.tif

Supplementary file1 (TIF 205 kb). Fig. S2. The effect of D-amino acids addition (700 µM) on (A) Hs 895.T skin cancer, and (B) Hs 895.Sk skin normal cell growth

Supplementary file2 (PDF 88 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, S., Sung, YS., Wey, M. et al. Roles of N-methyl-d-aspartate receptors and d-amino acids in cancer cell viability. Mol Biol Rep 47, 6749–6758 (2020). https://doi.org/10.1007/s11033-020-05733-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05733-8

Keywords

Navigation