Skip to main content
Log in

Surface Metallization and Ceramic Deposition on Thermoplastic-Polymer and Thermosetting-Polymer Composite Via Atmospheric Plasma Spraying

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

A spray coating technique is an excellent method for surface metallization and ceramic deposition to widen the application fields of irreplaceable engineering polymers. In this study, Al metallization and Al2O3 deposition on thermoplastic-polymers (polycarbonate, polyimide) and a thermosetting-polymer composite (carbon fiber reinforced epoxy) were conducted via atmospheric plasma spray (APS). Due to the susceptibility of polymers to thermal or mechanical damage, precise process control is required. It was shown that the engineering temperature range critically determines the process window of thermoplastic-polymers. An Al2O3 coating can be fabricated on polymers via an Al bond coat. Like a heat sink, the Al buffer layer enables polymers to endure process heating. In low thermally resistant polycarbonate (PC), only a low plasma energy source could be applied. Additionally, vaporization induced by Al droplet contact was a clear reason of the unstable weak interface between the coating and substrate. The coatings fabricated on polyimide (PI) substrates generally showed a continuous and clean interface with a moderate adhesion property. In the case of carbon fiber reinforced epoxy (CFRP), it is believed that carbon fibers acted as a heat sink such that considerable thermal damage of CFRP was not observed and there was not delamination of the coatings. However, fracturing of carbon fibers and epoxy resin by grit-blasting (surface pre-treatment) made the surface unstable. This led to the worst adhesion characteristics between the coating and CFRP substrate. It was demonstrated that because the available temperature range and surface condition are very sensitive compared to conventional metal substrates, advanced surface pre-treatment, precise process optimization, and additional cooling are required for successful deposition.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Reference

  1. R. Dyson, Engineering Polymers (Springer Science & Business Media, Berlin, 1991), pp. 1–14

    Google Scholar 

  2. J. Pascault, H. Sautereau, J. Verdu, R. Williams, Thermosetting Polymers (CRC Press, Boca Raton, 2002), pp 1–4

    Book  Google Scholar 

  3. V. Mittal, High Performance Polymers and Engineering Plastics (Wiley, New Jersey, 2011), pp 1–20

    Book  Google Scholar 

  4. J. Davis, Handbook of Thermal Spray Technology (ASM international, Cleveland, 2004), pp 3–99

    Google Scholar 

  5. H. Che, X. Chu, P. Vo, S. Yue, Surf. Coat. Technol. 329, 232–243 (2017)

    Article  CAS  Google Scholar 

  6. H. Che, P. Vo, S. Yue, Surf. Coat. Technol. 313, 236–247 (2017)

    Article  CAS  Google Scholar 

  7. G. Bae, Y. Xiong, S. Kumar, K. Kang, C. Lee, Acta Mater. 56, 4858–4868 (2008)

    Article  CAS  Google Scholar 

  8. M. Ivosevic, R. Knight, S. Kalidindi, G. Palmese, J. Sutter, J. Therm. Spray Technol. 14, 45–51 (2005)

    Article  Google Scholar 

  9. J. Voyer, P. Schulz, M. Schreiber, J. Therm. Spray Technol. 17, 818–823 (2008)

    Article  CAS  Google Scholar 

  10. W. Kim, A. Argento, P. Mohanty, J. Comp. Mater. 43, 277–287 (2009)

    Article  CAS  Google Scholar 

  11. N. Bheekhun, A. Talib, M. Hassan, Int. Rev. Aerosp. Eng. 7, 84–87 (2014)

    Google Scholar 

  12. A. Rezzoug, S. Abdi, A. Kaci, M. Yandouzi, Surf. Coat. Technol. 333, 13–23 (2018)

    Article  CAS  Google Scholar 

  13. A. Liu, M. Guo, J. Gao, M. Zhao, Surf. Coat. Technol. 201, 2696–2700 (2006)

    Article  CAS  Google Scholar 

  14. S. Aruna, N. Balaji, J. Shedthi, V. Grips, Surf. Coat. Technol. 208, 92–100 (2012)

    Article  CAS  Google Scholar 

  15. J. Li, H. Liao, C. Ding, C. Coddet, J. Mater. Process. Technol. 160, 34–42 (2005)

    Article  CAS  Google Scholar 

  16. A. Reheem, A. Atta, M. Maksoud, Radiat. Phys. Chem. 127, 269–275 (2016)

    Article  CAS  Google Scholar 

  17. Y. Tominaga, D. Shimamoto, Y. Hotta, Materials 11, 493 (2018)

    Article  Google Scholar 

  18. M. Ivosevic, R. Knight, S. Kalidindi, G. Palmese, High Perform. Polym. 15, 503–517 (2003)

    Article  CAS  Google Scholar 

  19. W. Huang, Y. Zhao, X. Fan, X. Meng, Y. Wang, X. Cai, X. Cao, Z. Wang, J. Therm. Spray Technol. 22, 918–925 (2013)

    Article  CAS  Google Scholar 

  20. L. Zhu, W. Huang, H. Cheng, X. Cao, J. Therm. Spray Technol. 23, 1312–1322 (2014)

    Article  CAS  Google Scholar 

  21. H. Abedi, M. Salehi, A. Shafyei, Surf. Coat. Technol. 337, 104–116 (2018)

    Article  CAS  Google Scholar 

  22. R. Joven, R. Das, A. Ahmed, P. Roozbehja van, B. Minaie, in SAMPE International Symposium Proceedings, Charleston, South Carolina, January 2012

  23. C. Li, B. Sun, Thin Solid Films 450, 282–289 (2004)

    Article  CAS  Google Scholar 

  24. O. Sarikaya, Mater. Des. 26, 53–57 (2005)

    Article  CAS  Google Scholar 

  25. S. Goel, S. Bjorklund, N. Curry, U. Wiklund, S. Joshi, Surf. Coat. Technol. 315, 80–87 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhee Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, H., Kim, J. & Lee, C. Surface Metallization and Ceramic Deposition on Thermoplastic-Polymer and Thermosetting-Polymer Composite Via Atmospheric Plasma Spraying. Met. Mater. Int. 27, 3293–3306 (2021). https://doi.org/10.1007/s12540-020-00864-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00864-w

Keywords

Navigation