Skip to main content
Log in

Microstructural and Mechanical Properties of a Material Processed by Streamline Proposed Vortex Extrusion Die

  • Published:
Metals and Materials International Aims and scope Submit manuscript

This article has been updated

Abstract

Vortex extrusion (VE), as a severe plastic deformation technique, uses a novel designed stationary die that imposes intense strain to the processed material. Materials in the VE process experience torsional deformation and simultaneous reduction in area. The amount and intensity of this additional deformation vary according to the radius moving from the center to the surface of the VE die due to variations in the path of the material through a radius proposed by the Beziers’ formulation. In the present study, the VE die is designed through a streamline approach based on a cubic Beziers’ formulation that was employed to investigate the microstructural and mechanical properties of the processed samples and to link the results to those obtained through a finite element analysis of this technique. The results of the microstructural characterization exhibit a higher fraction of high-angle grain boundaries of the VE processed samples compared to what can be achieved by conventional extrusion-processed. Consequently, a significant improvement was observed in tensile properties of the samples after SPD processing using the proposed streamlined VE die.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

  • 12 February 2021

    The Missed Graphic Abstract has been updated.

References

  1. Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater. 61, 782–817 (2013)

    Article  CAS  Google Scholar 

  2. E. Bagherpour, N. Pardis, M. Reihanian, R. Ebrahimi, An overview on severe plastic deformation: research status, techniques classification, microstructure evolution, and applications. Int. J. Adv. Manuf. Technol. 100, 1647 1694 (2019)

    Article  Google Scholar 

  3. T.G. Langdon, R.Z. Valiev, Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater Sci. 51, 881–981 (2006)

    Article  Google Scholar 

  4. H.H. Lee, J.I. Yoon, H.S. Kim, Single-roll angular-rolling: a new continuous severe plastic deformation process for metal sheets. Scripta Mater. 146, 204–207 (2018)

    Article  CAS  Google Scholar 

  5. N. Pardis, B. Talebanpour, R. Ebrahimi, S. Zomorodian, Cyclic expansion-extrusion (CEE): A modified counterpart of cyclic extrusion-compression (CEC). Mater. Sci. Eng. A 528, 7537–7540 (2011)

    Article  CAS  Google Scholar 

  6. N. Pardis, C. Chen, M. Shahbaz, R. Ebrahimi, L.S. Toth, Development of new routes of severe plastic deformation through cyclic expansion–extrusion process. Mater. Sci. Eng. A 613, 357–364 (2014)

    Article  CAS  Google Scholar 

  7. N. Pardis, C. Chen, R. Ebrahimi, L.S. Toth, C.F. Gu, B. Beausir, L. Kommel, Microstructure, texture and mechanical properties of cyclic expansion–extrusion deformed pure copper. Mater. Sci. Eng. A 628, 423–432 (2015)

    Article  CAS  Google Scholar 

  8. Y. Beygelzimer, R. Kulagin, Y. Estrin, L.S. Toth, H.S. Kim, M.I. Latypov, Twist extrusion as a potent tool for obtaining advanced engineering materials: a review. Adv. Eng. Mater. 19, 1–24 (2017)

    Article  Google Scholar 

  9. M. Nouri, H. Mohammadian Semnani, E. Emadoddin, Computational and experimental studies on the effect back pressure on twist extrusion process. Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00668-y

    Article  Google Scholar 

  10. J. Joudaki, M. Safari, S.M. Alhosseini, Hollow twist extrusion: Introduction, strain distribution, and process parameters investigation. Met. Mater. Int. 25, 1593–1602 (2019)

    Article  CAS  Google Scholar 

  11. Y. Beygelzimer, R. Kulagin, M.I. Latypov, V. Varyukhin, H.S. Kim, Off-axis twist extrusion for uniform processing of round bars. Met. Mater. Int. 21, 734–740 (2015)

    Article  Google Scholar 

  12. X. Ma, M.R. Barnett, Y.H. Kim, Forward extrusion through steadily rotating conical dies. Part I: experiments. Int. J. Mech. Sci. 46, 449–464 (2004)

    Article  Google Scholar 

  13. M. Shahbaz, N. Pardis, R. Ebrahimi, B. Talebanpour, A novel single pass severe plastic deformation technique: Vortex extrusion. Mater. Sci. Eng. A 530, 469–472 (2011)

    Article  CAS  Google Scholar 

  14. M. Shahbaz, R. Ebrahimi, H.S. Kim, Stream line approach to die design and investigation of material flow during the vortex extrusion process. Appl. Math. Model. 40, 3550–3560 (2015)

    Article  Google Scholar 

  15. M. Shahbaz, N. Pardis, J.G. Kim, R. Ebrahimi, H.S. Kim, Experimental and finite element analyses of plastic deformation behavior in vortex extrusion. Mater. Sci. Eng. A 674, 472–479 (2016)

    Article  CAS  Google Scholar 

  16. M. Shahbaz, J.G. Kim, R. Ebrahimi, H.S. Kim, Prediction of extrusion pressure in vortex extrusion using a streamline approach. IJMF 4, 52–56 (2016)

    Google Scholar 

  17. G. Ranjbari, A. Doniavi, M. Shahbaz, Numerical modelling and simulation of vortex extrusion as a severe plastic deformation technique using response surface methodology and finite element analysis. Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00635-7

    Article  Google Scholar 

  18. G. Ranjbari, A. Doniavi, M. Shahbaz, R. Ebrahimi, Effect of processing parameters on the strain inhomogeneity and processing load in vortex extrusion of Al-Mg-Si alloy. Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00761-2

    Article  Google Scholar 

  19. X. Che, Q. Wang, B. Dong, M. Meng, Z. Zhang, Numerical and experimental analysis of rotating backward extrusion as a new SPD process. Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-019-00600-z

    Article  Google Scholar 

  20. H. Ataei, M. Shahbaz, H.S. Kim, N. Pardis, Finite element analysis of severe plastic deformation by rectangular vortex extrusion (RVE). Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00742-5

    Article  Google Scholar 

  21. DEFORM-3D V11, Scientific forming technologies corporation (SFTC)

  22. CATIA v5R21, Dassault systems corporation

  23. N.Q. Chinh, G. Horvath, Z. Horita, T.G. Langdon, A new constitutive relationship for the homogeneous deformation of metals over a wide range of strain. Acta Mater. 52, 3555–3563 (2004)

    Article  CAS  Google Scholar 

  24. S.H. Molaei, M. Shahbaz, R. Ebrahimi, The Relationship between constant friction factor and coefficient of friction in metal forming using finite element analysis. IJMF 1, 14–22 (2014)

    Google Scholar 

  25. TSL OIM Analysis V5, EDAX, Inc

  26. ASTM, Standard Test Methods for Tension Testing of Metallic Materials, www.astm.org (2004)

  27. S.H. Joo, J.K. Lee, J.M. Koo, S. Lee, D.W. Suh, H.S. Kim, Method for measuring nanoscale local strain in a dual phase steel using digital image correlation with nanodot patterns. Scripta Mater. 68, 245–248 (2013)

    Article  CAS  Google Scholar 

  28. J.I. Yoon, J.G. Kim, J.M. Jung, D.J. Lee, H.J. Jeong, M. Shahbaz, S. Lee, H.S. Kim, Obtaining reliable true plastic stress-strain curves in a wide range of strains using digital image correlation in tensile testing. Met. Mater. Int. 54, 231–236 (2016)

    CAS  Google Scholar 

  29. M.I. Latypov, I.V. Alexandrov, Y.E. Beygelzimer, S. Lee, H.S. Kim, Finite element analysis of plastic deformation in twist extrusion. Comput. Mater. Sci. 60, 194–200 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Urmia University, Urmia, Iran and Pohang University of Science and Technology (POSTECH), Pohang, South Korea for financial support and access to the research facilities used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shahbaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahbaz, M., Pardis, N., Moon, J. et al. Microstructural and Mechanical Properties of a Material Processed by Streamline Proposed Vortex Extrusion Die. Met. Mater. Int. 27, 522–529 (2021). https://doi.org/10.1007/s12540-020-00851-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00851-1

Keywords

Navigation